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Abstract

Let Y = G/L be a flag manifold for a reductive G and K a maximal compact
subgroup of G. We define here an equivariant differential operator on G/L ∩ K
playing the role of the Dolbeault Laplacian for the complex manifold G/L, using a
distrbution transverse to the fibers of G/L∩K → G/L and satisfying the Hörmander
condition. We prove here that this operator is (surprisingly but hopefully) not max-
imal hypoelliptic.

Introduction

There are two challenging problems in representation theory of Lie groups. The first
one is to classify unitary representations for large classes of Lie groups. Connected
nilpotent Lie groups form such a class, and Kirillov established, for any connected
nilpotent Lie group, a bijective correspondance between the set of coadjoint orbits
and the set of (equivalence classes of) unitary irreducible representations of the group.
This approach lead to the second problem : to realize unitary representations geo-
metrically. These two problems are still open for reductive groups, but the technique
of coadjoint orbits is a constant source of inspiration. For reductive groups there are
three kind of orbits : the hyperbolic orbits, the elliptic orbits, and the nilpotent or-
bits. The hyperbolic orbits lead to the theory of parabolic induction and Knapp-Stein
intertwining operators. This is appropriate to construct unitary representations that
are weakly contained in the regular representation. The elliptic orbits are related
with the theory of cohomological induction and the geometry of flag manifolds. The
study of nilpotent orbits lead to the theory of unipotent representations. We are con-
cerned here with the geometry of flag manifolds and we use the theory of coadjoint
orbits for nilpotent Lie groups to handle regularity problems of differential operators
on flag manifolds.

Let G be a reductive Lie group and Y be a flag manifold for G. The G-space Y
is a complex manifold with an equivariant complex structure, and is a homogeneous
space of the form G/L, where the Lie subgroup L is reductive but don’t need to
be compact. A representation χ of L is chosen, and the usual Dolbeault complex
is twisted by χ. The smooth cohomology H∗(∂χ) of this complex is proved by H.
W. Wong [Won95] to be a Fréchet representation of G whose underlying Harish-
Chandra module is isomorphic to the cohomologically induced representation R(χ).
The proof of H. W. Wong uses the double fibration G/L← G/L∩K → G/K, where
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the group K is a maximal compact subgroup of G. One conjecture that if χ is a
unipotent unitary representation of L, whatever it means, then the representation
H∗(∂χ) is unitarizable. However, as a Fréchet space it can not carry a unitary
structure. In the best case, when L is compact, one choose a G-invariant hermitian
metric on Y and then consider two objects : the Hilbert space of square integrable
sections of the twisted Dolbeault complex, and the Dolbeault laplacian �χ = ∂χ∂

∗
χ +

∂
∗
χ∂χ. This differential operator is elliptic and is a selfadjoint operator on the Hilbert

space. Its L2-kernel is then proved to be a unitary representation that infinitesimally
isomorphic to the Fréchet representation. Such representations are sums of discete
series [AS77],[CM82]. In the general case, necessary to find other representations,
the flag manifold does not carry any G-invariant hermitian metric. A positive metric
is then defined in [RSW83] to define the Hilbert space, and I proved in full generality
[Pru06] that this Hilbert space is a continuous G-module. The proof again uses the
double fibration considered by Wong. To replace the G-invariant selfadjoint operator,
an invariant non-positive form on Y is defined [RSW83],[BKZ92]. It is used to define
the adjoint ∂

∗
χ,inv and the harmonic space ker ∂χ ∩ ker ∂

∗
χ. The point is that the

invariant operator ∂χ∂
∗
χ,inv + ∂

∗
χ,inv∂χ does not satisfy any regularity condition such

as ellipticity and can not be used.
We propose here a new invariant operator, defined via the fibration πL : G/L ∩

K → G/L and study its regularity properties as an operator on G/L ∩K. We first
define a distribution transverse to the fibers that satisfies the Hörmander’s condition.
It is used to pullback the Dolbeault operator also denoted by ∂. The manifold
G/L ∩K has a G-invariant positive metric defined by the Killing form, and we can
use it to define the formal adjoint ∂

∗ of the pullback of the Dolbeault operator. We
then define � = ∂∂

∗ + ∂
∗
∂. We first show that on sections constant along the fibers,

this operator equals (up to an operator of lower order) the Hörmander Laplacian
which is known to be maximal hypoelliptic. We next show that on the whole space
of sections over G/L∩K the operator � is not maximal hypoelliptic. To prove this we
provide the tangent space of G/L∩K with a nilpotent algebra structure, canonically
associated to the fibration πL, and find a non trivial irreducible representation σ
of the associated connected nilpotent Lie group such that σ(�) is not injective on
the space of smooth vectors of σ. Actually this turns out to be the case for many
representations.

The representation χ would have been of interest for the (more delicate) questions
of positivity for instance but does not come into questions of regularity ; we then use
the usual Dolbeault complex.

During the preparation of this article I benefited of many helpfull discussions with
L. Barchini, P. Julg, J.M. Lescure, B. Nourrigat, R. Ponge, A. Valette.

1 The Dolbeault Laplacian

1.1 Definition

Let Y = G/L be a flag manifold for a reductive Lie group G. This means that Y is
an open orbit in a flag manifold GC/Q, where GC is the complexified Lie group of G
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and Q is a parabolic subgroup of GC ; we also require that Y admits a G-invariant
measure. We note g0 the Lie algebra of G, and g its complexification and use the
same convention with other real and complex Lie algebras and spaces. Then Y has
an equivariant complex structure. Choices of a maximal compact subgroup K of G
and of a base point y0 ∈ Y can be made such that the reductive group L = StabG(y0)
is the centralizer of a compact torus with Lie algebra t′0 ∈ g0, LC is the Levi part of
Q and K/L ∩ K is a maximal compact complex submanifold of Y . The parabolic
algebra q has a decompostion q = l ⊕ u, and g = l ⊕ u ⊕ u with X 7→ X is the
conjugaison associated to the real form G of GC. The space u is L-isomorphic to the
antiholomorphic tangent space T 0,1

e G/L. Note that the connected reductive subgroup
L need not to be compact, so that Y does not have a G-invariant Riemannian metric
in general.

The manifold Y has a G-invariant complex structure : this means that the De
Rham operator d writes d = ∂+∂, where ∂ : ∧p,qTYC → ∧p+1,qTYC and ∂ : ∧p,qTYC →
∧p,q+1TYC are G-equivariant operators. The restriction to ∧0,∗TY = ∧∗u of the
operator ∂ is called the Dolbeault operator . The manifold Z = G/L∩K fibers over
Y and the group G acts on it properly. It then admits a G-invariant Riemannian
metric. We define the horizontal space at a point z ∈ Z to be the orthocomplement
Ez of the space Fz tangent at z to the fiber trough z.

We then have a connexion E on the fibration πL which enables to pullback the
Dolbeault operator.

Proposition 1. Let Y be a complex manifold with G-invariant complex structure
and π : Z → Y an equivariant fibration, with fiber F . We suppose that the exact
sequence

TF → TZ → π∗TY

has an equivariant splitting. Let p0,1
∗ be the transposed map of this splitting followed

by the projection p∗ to the (pullback of the) antiholomorphic tangent space π∗T 0,1Y .
Then there exists a unique operator ∂

′ on Z satisfying the following conditions.

∂
′(π∗ω) = π∗(∂ω) (1)

∂
′(fπ∗ω) = p0,1

∗ df ∧ (π∗ω) + fπ∗(∂ω) (2)

The operator ∂
′ will be denoted ∂ when no confusion arises.

Proof. We have to check that, for any f ∈ C∞(Z), any g ∈ Cinfty(Y ) non zero, and
any ω ∈ Γ(Y,∧∗T 0,1Y ), we have ∂

′(fπ∗gπ∗(g−1ω)) = ∂
′(fπ∗ω). Now,

∂
′(fπ∗gπ∗(g−1ω)) = p∗0, 1d(fπ∗g) ∧ π∗(g−1ω) + fπ∗gπ∗(∂(g−1ω))

= p∗0, 1(df)π∗gπ∗(g−1) ∧ π∗(ω) + fp∗0, 1d(π∗g)π∗(g−1) ∧ π∗(ω)

+ fπ∗gπ∗∂(g−1)π∗ω + fπ∗gπ∗(g−1)π∗(∂ω)

= p∗0, 1df ∧ (π∗ω) + fπ∗(∂ω) + fπ∗(g−1∂g + g∂(g−1)) ∧ ω

= ∂
′(fπ∗ω) .
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The action of G on G/L ∩K is proper. In particular, this G-space admits a G-
invariant Riemannian metric. As usual the choice of such a metric enables to define a
bilinear pairing ( , ) between the space of forms with compact supports and the space
of forms. The ∗-operator is then given by (α, β)dvol = α ∧ (∗β). We then define the
adjoint of the pullbacked Dolbeault operator (on homogeneous forms) by

∂
∗
ω = (−1)|ω|(∗∂∗)ω .

It remains to define the Dolbeault Laplacian by

� = ∂∂
∗ + ∂

∗
∂ .

This operator is G-equivariant by construction. The question is : can we build an
algebra of pseudodifferential operators on which the Dolbeault laplacian admits a
parametrix ? The result we prove here gives a negative answer to that question.

1.2 Structure of the transerve subbundle

The Dolbeault Laplacian is clearly not elliptic. To study more involved regularity
properties of this operator, we will need detailed information on the bundle E. We
now investigate the structure of this bundle E.

Definition 2. A subbundle E of the tangent space TZ is a 2-step bracket gener-
ating subbundle if for any point p ∈ Z, the space [X, Y ](p) mod Ep, with X and
Y running over sections of E,is the whole space TpZ/Ep. In particular the bundle
homomorphism

[ , ]0 :
∧

2E −→ TZ/E , (3)

induced by the barcket [ , ] of vectors fields, is onto. We say that E satisfies the
Hörmander condition at order 2.

Lemma 3. The subbundle E of the tangent bundle satisfies the Hörmander condition
at order 2.

Proof. Without lost of generality we may assume that g is simple. It is enough to
prove that s = u⊕ u + [u, u] is a non zero ideal of g. As q is a parabolic subalgebra,
u and u are sums of root spaces. Moreover g = l⊕ u⊕ u, so we get

[u, u] = ([u, u] ∩ l)⊕ ([u, u] ∩ u)⊕ ([u, u] ∩ u) .

Using this one checks that [u ⊕ u, [u, u]] ⊂ s. Let X, X ′ ∈ [u, u]. We write X =
Xl + Xu + Xu thanks to the preceding equation, and X ′ = [X ′

u, X ′
u]. This gives :

[X, X ′] = [[Xl, X
′
u], X ′

u] + [X ′
u, [Xl, X

′
u]] + X

′′
with X

′′ ∈ s. So [X, X ′] ∈ s and s is a
subalgebra of g. It is also clearly stable by l.

We now state a more precise result when G is the group U(p, q) and L = U(p1)×
U(p2, q) with p1 + p2 = p.

Lemma 4. There exists a sequence Γ = (γ1, . . . , γr) of roots in ∆(l∩p), such that, for
any α ∈ ∆(u) there exist at most one 1 ≤ i ≤ r and β ∈ ∆(u) such that α + γi = β.
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Proof. The roots in ∆ are ei − ej and

∆(l ∩ p) = {ei − ej ; p1 < i ≤ p < j ≤ p + q}
∆(u) = {ei − ej ; 1 ≤ i ≤ p1 < j ≤ p + q} .

Set r = min{p1, q} (the real rank of the noncompact semi simple part of l) and
let Γ = (γi) be any set of strongly orthogonal roots. For exemple, one may take
γi = ep1+i − ep+q−i. The result follows easily. In fact, if α = ei − ej ∈ ∆(u) then the
only β = ek − el that may work are those with k = i or l = j, and only one of them
can lies in Γ.

1.3 Statement of the main result

Let us precise now the regularity property of differential operators we want to in-
vestigate. Let X1, . . . , Xk be vector fields on a neighborhood V of a point x0 ∈ Rn,
and let Ex0 be the subspace of Rn generated by the vectors Xi(x0). We also assume
that vectors [Xi, Xj ](x0) mod (Ex0) generate the vector space Rn/Ex0 . The space
of operators of order less than m is the space of operator P that can be written in
the form

P =
∑
|α|≤m

aα(x)Xα , Xα = Xα1
1 · · ·X

αk
k , (4)

where the coefficient aα(x) are smooth functions of the variable x on V .

Definition 5. [HN85] A differential operator P of order m is maximal hypoelliptic at
x0, if there exists a neighborhood V of x0 and a constant C so that for all u ∈ C∞

c (V ),∑
|α|≤m

‖Xαu‖L2 ≤ C
(
‖u‖L2 + ‖Pu‖L2

)
.

Maximal hypoellipticity of an operator P implies that P is hypoelliptic, i.e.

Pu smooth ⇒ u smooth .

The principal E-symbol is by definition p =
∑

|α|=m aα(x)ξα. We will use the sign
”'” to say that two operators have the same principal E-symbol. The following
result is well known (see [HN85]).

Proposition 6. The Hörmander Laplacian
∑

i X
2
i is maximal hypoelliptic.

We choose here the metric given by the Killing form B. More precisely, the metric
is defined at the origin by

〈X, Y 〉 = −B(X, θ(Y )) .

This form is definite positive on g and is k-invariant. The tangent spaces TeY ' u⊕u

and TeZ ' u⊕ u⊕ (l ∩ p) are provided with this hermitian metric.

Theorem 7. Let G = SU(p, q) and L = S(U(p1)× U(p2, q)), with p1 + p2 = p. The
Laplacian � is not maximal hypoelliptic at the origin eL ∩K.
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One may conjecture this this result is true for any semisimple Lie group and
flag manifold. The exposition of the proof is intended to make clear that only the
lemma 4 as to be generalized. So let G be a semisimple Lie group with a compact
Cartan subaglra, and G/L be a flag manifold for G. This assumption on the Cartan
subalgebra makes less technical the computation of the principal E-symbol , but we
should proceed without it.

The next section is devoted to the proof of the theorem 7. To prepare the proof
we compute here the local expression of the principal E-symbol of this operator. The
Cartan subalgebra being compact, we may suppose that h0 ⊃ t0, so that

t′0 ⊂ t0 ⊂ l0 ∩ k0 ⊂ l0 ⊂ g0 .

Let ∆ be the root system of the pair (g, t) All roots of the root system ∆(g, t) being
compact or non compact, it makes sens to define ∆(u ∩ k) and ∆(u ∩ p) and so on.
We choose a system ∆+(g, t) of positive roots such that ∆(u) ⊂ ∆+(g, t). As the
Killing form is non-degenerate there exists for any α ∈ ∆ a vector Hα ∈ t so that for
all H ∈ t, α(H) = B(H,Hα).

Lemma 8. There exists an orthonormal basis (Eα)α∈∆ of root vectors satisfying

[Eα, E−α] = Hα (5a)
[Eα, Eβ] = Nα,βEα+β with Nα,β = 0 if α + β /∈ ∆ (5b)

Nα,β = −N−α,−β . (5c)

Proof. According to [Hel62, theorem 5.5] there exists a basis (E′
α) satisfying equations

(5). The relation (5a) implies that B(E′
α, E′

−α) = 1. Moreover B(E′
α, E′

β) = 0 if
α + β 6= 0, and ‖E′

α‖ > 0, so it follows that −θ(E′
α) = c−αE′

−α, with cαc−α = 1. We
now define Eα = xαE′

α where xαx−α = 1 and x2
α = −cα. We then get

−θ(Eα) = xαc−αE′
−α = −E−α and (6)

[Eα, E−α] = xαx−α[E′
α, E′

−α] = Hα . (7)

So that 〈Eα, Eα〉 = B(Eα, E−α) = 1 and the basis (Eα) is now orthonormal. Using
equations (6) and (7) is easy to check that the basis (Eα) again satifies the equations
(5).

We set Zα = Eα and

Zα =
{
−E−α if α is compact,
Eα if α is non compact.

This notation is concording with the complex structure. Let us now define the real
vectors Xγ and Yγ .

Xγ =
1√
2

(
Zγ + Zγ

)
, Yγ = − i√

2

(
Zγ − Zγ

)
.
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The sytem (Xγ , Yγ)γ∈∆+\Delta+(l∩k) is an orthonormal basis of TeZ and (Xγ , Yγ)γ∈∆(u

is an orthonormal basis of Ee ' TeY . Moreover if J denotes the complex multiplica-
tion operator, one has Yγ = JXγ , for γ ∈ ∆(u) (and γ ∈ ∆(l∩ p) when L/L∩K is a
hermitian symertic space). We also have

Xα =
1√
2
(Eα − E−α) Yα = − i√

2
(Eα + E−α) if α is compact, (8a)

Xβ =
1√
2
(Eβ + E−β) Yβ = − i√

2
(Eβ − E−β) if β is non compact. (8b)

Proposition 9. For α ∈ ∆(u ∩ k) and β ∈ ∆(u ∩ p) we have

[Xα, Xβ] =
1√
2

(
NαβXα+β + Nα,−βX|α−β|

)
(9a)

[Xα, Yβ] =
1√
2

(
Nα,βYα+β − ε(α− β)Nα,−βY|α−β|

)
(9b)

[Yα, Xβ] =
1√
2

(
Nα,βYα+β + ε(α− β)Nα,−βY|α−β|

)
(9c)

[Yα, Yβ] = − 1√
2

(
Nα,βXα+β −Nα,−βX|α−β|

)
(9d)

The vectors involving roots of the form α + β lie in Ee. The vectors involving roots
of the form α− β may lie in Fe, but don’t need to. Other brackets of base vectors lie
in Ee.

To prove this proposition one just computes using equations (5b,5c) and the fact
that if α ∈ ∆(u ∩ k) is compact and β ∈ ∆(u ∩ p) is non compact then α ± β either
is a non compact root or is not a root.

Let eγ be the exterior multiplication by Zγ . Then the Dolbeault operator has the
following principal E-symbol.

∂ '
∑

γ∈∆(u)

eγZγ ,

where Zγ is here the left invariant vector field generated by Zγ . Let iγ be the interior
multiplication by Zγ with respect to the chosen metric. Then

∂
∗ ' −

∑
γ∈∆(u)

iγZγ .

According to the previous notations these equations become

∂ '
∑

γ∈∆(u)

eγ√
2

(
Xγ − iYγ

)
,

∂
∗ ' −

∑
γ∈∆(u)

eγ√
2

(
Xγ + iYγ

)
.
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It now remains to compute.

� ' −1
2

( ∑
γ

eγ (Xγ − iYγ) ·
∑
γ′

iγ′
(
Xγ′ + iYγ′

)
+

∑
γ′

iγ′
(
Xγ′ + iYγ′

)
·
∑

γ

eγ (Xγ − iYγ)
)

.

Let us write the diagonal terms separetely.

� '−1
2

∑
γ∈∆(u)

(eγiγ + iγeγ)
(
X2

γ + Y 2
γ

)
−1

2

∑
γ 6=γ′

eγiγ′
[ (

XγXγ′ + YγYγ′
)

+ i
(
XγYγ′ + YγXγ′

) ]
+ iγ′eγ

[ (
Xγ′Xγ + Yγ′Yγ

)
+ i

(
Yγ′Xγ + Xγ′Yγ

) ]
We have eγiγ′ + iγ′eγ = δγγ′ (Kronecker’ symbol).

� '−1
2

∑
γ∈∆(u)

(
X2

γ + Y 2
γ

)
−1

2

∑
γ 6=γ′

eγiγ′
[ (

[Xγ , Xγ′ ] + [Yγ , Yγ′ ]
)

+ i
(
[Xγ , Yγ′ ] + [Yγ , Xγ′ ]

) ]
Using proposition 9 one gets

[Xγ , Xγ′ ] + [Yγ , Yγ′ ] =
√

2 Nα,−βX|α−β| and

[Xγ , Yγ′ ] + [Yγ , Xγ′ ] = −
√

2 Nα,−βY|α−β| ,

if γ = α is compact and γ′ = β is non compact. One has similar relations when γ = β
is non compact and γ′ = α is compact. Other brackets are horizontal and they don’t
appear in the principal E-symbol. This gives

� '− 1
2

∑
γ∈∆(u)

(
X2

γ + Y 2
γ

)
+
√

2
2

∑
γ∈∆(l∩p)

[ (∑
∗Nα,β (eαiβ − eβiα)

)
Xγ

+ i
(∑

∗Nα,β (eαiβ + eβiα)
)

Yγ

]
(10)

where the sums
∑∗ are over α ∈ ∆(u ∩ k), β ∈ ∆(u ∩ p) and |α− β| = γ. The local

formula (10) will be used later in the proof of theorem 7.
This formula is already usefull for functions. In fact, the terms of classical order

1 vanish on functions, so � is maximally hypoelliptic when restricted to functions
because it has the same principal E-symbol as the Hörmander Laplacian (up to a
constant).
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2 The Rockland condition

2.1 Hypoellipticity criterion

For the proof of the theorem 7 we use techniques of Folland and Stein [FS74]. We
now provide the tangent space TeZ with a nilpotent Lie algebra structure n0. This
structure is given by the brackets [ , ]0, and the identification of TZ/E with F . The
Lie brackets [[ , ]] is then given as follows. Compare with proposition 9.

Definition 10. For α ∈ ∆(u ∩ k) and β ∈ ∆(u ∩ p) we have

[[Xα, Xβ]] =
1√
2

(
N ′

α,−βX|α−β|

)
(11a)

[[Xα, Yβ]] =
1√
2

(
− ε(α− β)N ′

α,−βY|α−β|

)
(11b)

[[Yα, Xβ]] =
1√
2
ε(α− β)N ′

α,−βY|α−β|

)
(11c)

[[Yα, Yβ]] = − 1√
2

(
−N ′

α,−βX|α−β|

)
, (11d)

where N ′
α,−β = Nα,−β if α− β ∈ ∆(l∩ p) and 0 otherwise. All other brackets of base

vectors are defined to be 0.

Let P be a differential operator on an open set of Rn as in the first part, with
principal E-symbol p. We say that P satisfies the Rockland condition if for any
unitary irreducible non trivial representation π of the simply connected nilpotent Lie
group N = exp(n), the operator π(p) is injective on the space of smooth vectors of
π. The sympbol p is seen here as an element of the enveloping algebra U(n) of n.

Theorem 11. [HN85] The following are equivalent

• P has a parametrix in the E-pseudodifferential calculus

• P satifies to the Rockland condition

• P is maximal hypoellitptic

Let N be a nilpotent Lie group with Lie algebra n0. Then N acts on n∗ by
the coadjoint representation. Kirillov defined a one-to-one correspondance between
coadjoint orbits and (equivalence classes of) irreducible unitary representations of
the group N constructed in three steps as follows.

Lemma 12. Let l be a form on n0 and Bl : (X, Y ) 7→ l([X, Y ]). Then there exists
an isotropic subalgebra h0 of n0 for Bl such that codimh0 = 1

2rankBl.

Then exp(il) is a one dimensionnal representation of the Nilpotent group H.

Lemma 13. The induced representation IndN
Heil is irreducible and its class only

depends on the coadjoint orbit of l.

There is also a converse statement.
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Lemma 14. All irreducible representations of N arises in this way exactly once.

We will need to recognize induced representations realized on Rn. Let π be a
representation of the nilpotent Lie algebra n0 on S(Rn). We suppose that, for any
X ∈ n0 , the operator π(X) has the form

π(X) =
n−1∑
k=1

Pk(y1, . . . , yk−1;X)
∂

∂yk
+ iQ(y1, . . . yn;X) ,

where Pk(·;X) and Q(·;X) are polynomials on Rn depending linearily on X. We
also assume that the linear forms ξk(X) = Pk(0;X) are linearily independent. Let l
be the linear form on n0 defined by l(X) = Q(0;X) and h0 = ∩ ker ξk.

Proposition 15. [HN85, Proposition 1.6.1] Under the above assumptions, the sub-
space h0 is a subalgebra of n0, isotropic for Bl. Moreover, the representation π is
unitarily equivalent to IndN

Heil.

2.2 Proof of the main theorem

Here we prove that the evaluation of the Dolbeault laplacian has a kernel of positive
dimension on many representations under conditions on root systems. The choice of
these representations et the check of the root systems conditions are made for the
groups G = U(p, q) and L = U(p1) × U(p2, q), with p1 + p2 = p. I expect that this
can be done in full generality.

We now have to fine unitary irreducible representations of the connected nilpotent
Lie group H and to realize them on L2(Rn). This will lead to a partial differential
equation on Rn. In other words the linear form on n0 that gives the representation of
N , has to be taken such that the obtained partial differential equation can be solved
and has a non zero solution space. Let l ∈ n∗0 be a linear form on n0 with coordinates
(ξγ , ηγ) in the dual basis of (Xγ , Yγ). Let πl be the representation of N associated to
the coadjoint orbit of l.

Using definiton 10 one find that the form Bl : (X, Y ) 7→ l([X, Y ]) as a martix of
the form 0 A 0

−At 0 0
0 0 0

 , with A =
N ′

α,−β√
2

(
ξ|α−β| −ε(α− β)η|α−β|

ε(α− β)η|α−β| ξ|α−β|

)
α,β

.

We make the following assumption on l.
(H) A has a maximal rank.
If hypothesis (H) is true then
(H’) either p0 or l0 ∩ p0 ⊕ (u⊕ u) ∩ k0 is a maximal abelian subalgebra of n0.
This means that the hypothesis (H) is more an hypothesis on the pair (G, Q) than
on the linear form l. Let us assume hypothesis (H). Let h0 be the abelian subalgebra
of n0 such that

h0 = p0 if dim p0 = max
{

dim p0 ; dim l0 ∩ p0 ⊕ (u⊕ u) ∩ k0
}

,
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and h0 = l0 ∩ p0 ⊕ (u⊕ u) ∩ k0 otherwise. Then

codimh0 =
1
2
rankBl ,

and h0 is an isotropic subspace for Bl.

Lemma 16. Let G = U(p, q) and L = U(p1) × U(p2, q). There exists a linear form
l such that hypothesis (H) is satisfied.

Proof. Take l be non zero on root vectors correszponding to a set of strongly orthog-
onal roots in ∆+(l ∩ p) such as in the proof of lemma 4, and 0 elsewhere. Then A is
”diagonal” with no zero on the diagonal, by lemmas 3,4.

First case. Let us begin with the case h0 = p0. Let s = dimCK/L ∩K = dimu ∩ k.
Then πl = IndN

H eil is a unitary irreducible representation of N on L2(n0/h0) that
can be seen as a representation on L2(R2s). We note (xα, yα)α∈∆(u∩k) the canonical
basis of R2s. Thanks to proposition 15, we have

πl(Xα) =
∂

∂xα
+ iξα πl(Yα) =

∂

∂yα
+ iηα

πl(Xβ) = i
∑
α

[
N ′

α,−β√
2

(ξ|α−β|xα − ε(α− β)η|α−β|yα)

]
+ iξβ

πl(Yβ) = i
∑
α

[
N ′

α,−β√
2

(ε(α− β)η|α−β|xα + ξ|α−β|yα)

]
+ iηβ

πl(Xγ) = iξγ πl(Yγ) = iηγ

To make the computation more easy we also suppose that

ξα = ηα = ξβ = ηβ = 0 .

This is not true in general that any orbits admits a form of this kind, but this is
enough, to prove the theorem, to find such forms such that πl(�) is not injective.
Then, the operator πl

(
�

)
has the following form.

πl

(
�

)
= −1

2

∑
α

[
∂2

∂x2
α

+
∂2

∂y2
α

− r2
α(x2

α + y2
α)

]
+

∑
α

[∑
∗Mα,β

]
, (12)

where rα is the positive real number such that r2
α =

∑∗N ′
α,−β

2

2 (ξ2
|α−β| + η2

|α−β|), and

Mα,β =
iN ′

α,−β√
2

[
(ξ|α−β| + iη|α−β|)eαiβ − (ξ|α−β| − iη|α−β|)iβeα

]
is an endomorphism of ∧∗u and the sum

∑∗ is over the set of roots β ∈ ∆(u ∩ p)
such that α− β ∈ ∆(l ∩ p).
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Let Dα = −1
2

[
∂2

∂x2
α

+ ∂2

∂y2
α
− r2

α(x2
α + y2

α)
]

and Mα =
∑∗Mα,β. We have to find

eigenvalues of
∑

α Dα and
∑

α Mα of opposite signs and the same absolute value.
Making the change of variables

xα 7→ r
1
2
αxα yα 7→ r

1
2
αyα ,

the operator Dα becomes − rα
2

[
∂2

∂x2
α

+ ∂2

∂y2
α
− (x2

α + y2
α)

]
. It is − rα

2 times the Hermite
operator of dimension 2. Its eigenvalues are then−krα, with k ∈ N∗. As the operators
Dα differentiate on different variables, we see that the eigenvalues of

∑
α Dα are

−
∑

α kαrα, with kα ∈ N∗. We also note that the eigenfunctions of the Hermite

operator are of the form Pe−
x2+y2

2 where P is a polynomial in x and y. So they are
in the Schwarz space, so are smooth vectors of the representation πl.

Let us now show that ±
∑

α rα is an eigenvalue of
∑

α Mα. We first show that
rα is an eigenvalue of Mα. Let ∆(u ∩ k) = {α1, . . . , αs} and v = Zα1 ∧ · · · ∧ Zαs . If
β 6= β′, then Mα,βMα,β′(v) = Mα,β′Mα,β(v) = 0 and moreover

M2
α,β(v) =

N
′2
α,−β

2
(ξ2
|α−β| + η2

|α−β|) .

It follows that
M2

α(v) =
∑

∗M2
α,β(v) = r2

αv .

So the vector ±rαv + Mαv is an eigenvector for Mα with eigenvalue ±rα.

Proposition 17. Let k ≤ s and {i1; · · · ; ik} ⊂ {1; · · · ; s}. Then
∏k

l=1 Mαil
v does

not depend on the order of the il.

This proposition is easily checked by induction on k. We now define by induction,
for k ≤ s, the vectors vk by v0 = v and

vk = (rαk
+ Mαk

)vk−1 .

The preceding proposition shows that if vk−1 is an eigenvector for Mαl
, l < k, with

eigenvalue rαl
, then vk is again an eigenvector for Mαl

, l < k, with eigenvalue rαl
.

Lemma 18. Let G = U(p, q) and L = U(p1) × U(p2, q). There exists a linear form
l on n0 satisfying hypothesis (H), and such that vk is an eigenvector for Mαk

, with
eigenvalue rαk

.

Proof. Take l has in the proof of lemma 16 again works.

Hence vs is a simultaneous eigenvector for all Mα’s, with respective eigenvalue
rα. So vs is an eigenvector for

∑
α Mα with eigenvalue

∑
α rα. We end this first case

h = p0 remarking that the constructed eigenvector lies in ∧su, and this means that
� is not maximally hypoelliptic on degree s = dimC K/L ∩K.

Second case. Let us now assume that t = dim u ∩ p < s. Switching the role played
in the first case by the α’s and the β’s, one similiraly prove that � is not maximally
hypoelliptic on ∧tu. Using the duality

∧ : ∧t u⊗ ∧su→ ∧maxu ,

12



one shows that � is not maximally hypoelliptic on degree s in the second case too.
Finally, we have shown that � is never hypoellitpic on degree s and on the

complementary degree t.
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