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ABSTRACT. We study algebras associated to N -body type Hamiltonians with interactions
that are asymptotically homogeneous at infinity on a finite dimensional, vector real space
X . More precisely, let Y ⊂ X be a linear subspace and vY be a continuous function on
X/Y that has uniform homogeneous radial limits at infinity. We consider in this paper
Hamiltonians of the form H = −∆ +

∑
Y ∈S vY , where the subspaces Y ⊂ X belong

to some given, semi-lattice S of subspaces of X . Georgescu and Nistor have considered
the case when S consists of all subspaces Y ⊂ X (in a paper to appear in Journal of
Operator Theory). As in that paper, we also consider more general Hamiltonians affiliated
to a suitable cross-product algebra ES(X) o X . A first goal of this note is to see which
results of that paper carry through to the case when S (the set of “collision planes”) is
finite and, for the ones that do not, what is their suitable modification. While the results on
the essential spectra of the resulting Hamiltonians and the affiliation criteria carry through,
the spectra of the corresponding algebras are quite different. Identifying these spectra may
have implications for regularity of eigenvalues and numerical methods. Our results also
shed some new light on the results of Georgescu and Nistor in the aforementioned paper
and, in general, on the theory developed by Georgescu and his collaborators. For instance,
we show that, in our case, the closure is not needed in the union of the spectra of the limit
operators. We also give a quotient topology description of the topology on the spectrum of
the graded N -body C∗-algebras introduced by Georgescu.
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1. INTRODUCTION

We continue the study begun by Georgescu and Nistor [14] of Hamiltonians of N -
body type with interactions that are asymptotically homogeneous at infinity on a finite
dimensional Euclidean space X . The Hamiltonians considered in that paper were obtained
by a procedure (described below) that was employing all subspaces Y ⊂ X , whereas in
this paper, we only consider those subspaces Y that belong to a suitable semi-lattice S of
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subspaces of X satisfying X ∈ S. (Thus Z1∩Z2 ∈ S if Z1, Z2 ∈ S.) Whenever possible,
we follow the broad lines of [14]. Eventually, we shall assume that S is finite, but we begin
with the general case.

To fix ideas, let us mention right away an important example of a semi-lattice that arises
in the study of quantum N -body problems. Namely, it is the semi-lattice SN of subspaces
of X := R3N generated by the subspaces X and

(1)
Pj := {(x1, x2, . . . , xN ) ∈ R3N | xj = 0 ∈ R3} , 1 ≤ j ≤ N , and

Pij := {(x1, x2, . . . , xN ) ∈ R3N | xi = xj ∈ R3} , 1 ≤ i < j ≤ N .

Thus, in addition to the spaces X , Pj , and Pij , the semi-lattice SN (the N -body semi-
lattice) contains also all intersections of the subspaces Pj and Pij .

Let us fix a semi-lattice S with X ∈ S . It turns out that the results in [14] on essential
spectra and on the affiliation of operators carry through to this arbitrary semi-lattice S. This
is easy to see and is explained in this introduction. However, some important intermediate
results on the representations of the cross-product algebras ES(X) o X that control the
Fredholm property, are different in the general case. (See Equation (3) for the definition of
the algebra ES(X).) A careful study of the representations of these algebras also allows us
to sharpen the results on the essential spectra by removing the closure in the union of the
spectra of the limit operators when S is finite. (See Theorem 1.1.)

Possible applications of the extensions presented in this paper are to regularity results
and hence to numerical methods for the resulting Hamiltonians and the study of the fine
structure of their spectrum. Some of the applications and proofs will be included in a
forthcoming paper, here concentrating instead on the global picture. Nevertheless, we
include the proofs of some results that we are not planing to discus anywhere else, such as
the topology on the spectrum of Georgescu’s graded algebras. We also include complete
details of the proof that we can remove the closure in the union of the spectra in Theorem
1.1. The proof of this result may also be useful for other applications.

Let us now discuss the settings of the paper and state our first result on essential spectra,
Theorem 1.1.

For any real vector spaceZ, we letZ denote its spherical compactification (this standard
notion is discussed in great detail in [14]). A function in C(Z) is thus a continuous function
on Z that has uniform radial limits at infinity. For any subspace Y ⊂ X , πY : X → X/Y
denotes the canonical projection. Let

(2) H := −∆ +
∑
Y ∈S

vY ,

where vY ∈ C(X/Y ) is regarded also as a function on X via the projection πY : X →
X/Y . The sum is over all subspaces Y ⊂ X , Y ∈ S, but is assumed to be convergent.
One of the main result of [14] describes, in particular, the essential spectrum of H on
L2(X) when S consists of all subspaces of X as σess(H) = ∪α∈SXσ(τα(H)), with the
notation being the one used in Theorem 1.1. This result directly extends the celebrated
HVZ theorem [4, 29, 33]. A first goal of this paper is to explain how the results and
methods of [14] are affected by assuming that S is finite. We include also some extensions
of the results in [14].

On a technical level, we obtain smaller algebras than the ones in [14], so the results
on the affiliation of operators and on their essential spectra remain valid in our case in a
trivial way (this is because, if B ⊂ A and we have results for operators affiliated to A, then
these results will be valid for operators affiliated to B as well). We will thus review just
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a small sample of results of this kind. On the other hand, for a possible further study of
Hamiltonians of the form (2), it may be useful to have an explicit description of the spectra
of the intermediate algebras involved (the algebras ES(X) and ES(X) o X introduced
next). These spectra change dramatically in the case S finite. Concretely, let

(3) ES(X) := 〈C(X/Y )〉 , Y ∈ S .

In other words, ES(X) is the closure in norm of the algebra of functions onX generated by
all functions of the form u◦πY , where Y ∈ S and u ∈ C(X/Y ). SinceX acts continuously
by translations on ES(X), we can define the crossed product C∗-algebra ES(X) o X ,
which can be regarded as an algebra of operators on L2(X). It is the algebra generated by
operators of multiplication by functions in ES(X) and operators of convolution, that is, by
operators of the form mfCφ, where mf is the operator of multiplication by f ∈ ES(X)
and Cφu(x) :=

∫
X
φ(y)u(x − y)dy is the operator of convolution by φ ∈ C∞c (X). Let

V ∈ ES(X) (for instance, we could take V :=
∑
Y ∈S vY , as in Equation (2)). Recalling

that H and ∆ are self-adjoint, we then obtain

(4) (H + i)−1 = (−∆ + i)−1[1 + V (−∆ + i)−1
]−1 ∈ ES(X) oX .

This means that the operator H of Equation (2) is affiliated to ES(X) o X . (Let A be a
C∗-algebra. Recall that a self-adjoint operator P affiliated to A is an operator P with the
property that (P + i)−1 ∈ A [6].) This is, in fact, one of the starting points of the theory
developed by Georgescu and his collaborators [5, 6, 12, 13].

For each x ∈ X , we let (Txf)(y) := f(y − x) denote the translation on L2(X). Let
SX be the set of half-lines in X , that is

(5) SX := { â, a ∈ X, a 6= 0 } ,

where â := {ra| r > 0}. For any operator P on L2(X), we let

(6) τα(P ) := s-lim
r→+∞

T ∗raPTra , if α = â ∈ SX ,

whenever the strong limit exists. We identify SZ = Z r Z for any real vector space Z.

Theorem 1.1. The operatorH of Equation (2) is self-adjoint and affiliated to ES(X)oX .
Let H be any self-adjoint operator affiliated to ES(X) o X and α = â ∈ SX . Then the
limit τα(H) := s-limr→+∞ T ∗raHTra exists and, if S is finite, then

σess(H) = ∪α∈SXσ(τα(H)) .

Most of this theorem is (essentially) contained in [14], however, in that paper, only
the relation σess(H) = ∪α∈SXσ(τα(H)) was proven, but without restrictions on S.
This amounts to the fact that the family {τα} is a faithful family of representations of
ES(X)oX . Our stronger result is obtained by showing that the family {τα} is actually an
exhausting family of representations of ES(X)oX (Theorem 6.6). We notice that if 0 /∈ S,
then the part of the above theorem on the essential spectrum simply states that σess(H) =
σ(H), as H is be among the operators τα(H), since H is invariant with respect to a non-
trivial subspace of X . In the theorem, the limits of self-adjoint, unbounded operators are
in strong resolvent sense, in the sense that s-limr→+∞ T ∗ra(H + i)−1Tra exists for each
α = R∗+a. If the limit is zero (which may happen if the potential V is unbounded at
infinity), then we agree that τα(H) =∞ and σ(τα(H)) = ∅, see [6, 23].

One of the main points of Theorem 1.1 is that the operators τα(H) are generally simpler
than H (if 0 ∈ S) and (often) easy to identify. The operators τα(H) are sometimes called
limit operators.
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Here is a typical example. If u : X → C, we shall write av-limα u = c ∈ C if
lima→α

∫
a+Λ
|u(x)− c|dx = 0 for some (hence any!) bounded neighborhood of Λ of 0 ∈

X . Here a ∈ X ⊂ X := X ∪ SX , α ∈ SX , and the convergence is in the natural topology
of the spherical compactificationX ofX . For instance, let us assume that we are given real
valued functions vY , Y ∈ S , such that av-limα vY exists for all α ∈ SX/Y and vY = 0
except for finitely many subspaces Y . Let V :=

∑
Y vY . If α 6⊂ Y then πY (α) ∈ SX/Y

is a well defined half-line in the quotient and we may define vY (α) := av-limπY (α) vY .
Then Proposition 1.3 of [14] gives that

(7) τα(H) = −∆ +
∑
Y⊃α

vY +
∑
Y 6⊃α

vY (α) .

For the usual N -body type Hamiltonians, we have that vY : X/Y → R vanish at infinity.
In that case τα(H) = −∆ +

∑
Y⊃α vY , which is the usual version of the HVZ theorem.

This calculation remains valid for operators of the form (8).
For the result of Theorem 1.1 to be effective, we need some concrete examples of self-

adjoint operators on L2(X) affiliated to ES(X) o X . Let us briefly recall the affiliation
criteria of [14] and see that they work in our setting as well.

Let B(X) be the set of functions u ∈ L∞(X) such that the “averaged limits” av-limα u

(defined earlier) exist for any α ∈ SX and let E]S(X) ⊂ L∞(X) be the norm closed
subalgebra of L∞(X) generated by the algebras B(X/Y ), when Y ∈ S. Let h be a proper
real function h : X∗ → [0,∞) (i.e. |h(k)| → ∞ for k → ∞). Also, let F : L2(X) →
L2(X∗) be the Fourier transform and h(p) := F−1mhF be the associated convolution
operator. We consider then v ∈ L1

loc(X) a real valued function such that there exists a
sequence vn ∈ E]S(X) of real valued functions with the property that (1 + h(p))−1vn is
convergent in norm to (1 + h(p))−1v. Then

(8) H := h(p) + v

is affiliated to ES(X) o X . This allows us to consider potentials v with Coulomb type
singularities (in particular, unbounded).

A second example of affiliated operators is obtained by considering symmetric, uni-
formly strongly elliptic operators

∑
|α|+|β|≤m ∂

αgαβ∂
β with coefficients gαβ ∈ E]S(X),

as in [14].
See [1, 4, 8, 29, 32] for a general introduction to the basics of the problems studied

here and [14] for some more specific references. In addition to the works of Georgescu
and his collaborators mentioned above, essential spectra have been studied using algebraic
methods by many people, including [7, 3, 16, 15, 19, 28, 26, 27, 30, 31]. We also note the
similar approach to magnetic Schrödinger operators [21, 22].

We now briefly describe the contents of the paper. In Section 2, we recall the theory
developed by Georgescu and his collaborators on the of localizations at infinity for C∗-
sub-algebras of Cbu(X). A prominent role here is played by representations induced from
characters. In Section 3, we introduce the basic algebras ES(X) generated by functions of
the form vY ◦πY and study radial limits at infinity for functions in these algebras. In order
to describe the (character) spectrum of ES(X) as a set, we introduce the concepts of an
“S-chain” and of an “augmented S-chain.” An S-flag is a sequenceZ of distinct subspaces
0 = Z0 ⊂ Z1 ⊂ . . . ⊂ Zk in S. An S-chain associated to the S-flag Z is a sequence
−→α := (α1, α2, . . . , αk), with αj ∈ SZj/Zj−1

(the sphere at infinity of Zj/Zj−1) such that
Zj is the least subspace in S containing αj (in an obvious sense). An augmented S-chain is
a pair (a,−→α ), where −→α is an S-chain associated to Z = (Z0, Z1, . . . , Zk) and a ∈ X/Zk.
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We then show that the set of characters of ES(X) is in a natural bijection with the set of
augmented S-chains (Theorem 3.9). In section 4 we obtain some results on the topology
on the spectrum of ES(X). In Section 5, we use the result of Section 3 and 4 to give a
description of the spectrum of Georgescu’s algebra GS(X) introduced in his study of the
N -body problem. Georgescu’s algebra is generated by C0(X/Y ), and hence more natural
for the study of the N -body problem. Its spectrum seems to be more singular, however.
The topology on the spectrum of Georgescu’s algebra GS(X) is studied by noticing that
GS(X) is contained in ES(X). In the final section 6, we turn our attention to the crossed
product algebra ES(X) oX . We then use result of [10, 35] to describe its primitive ideals
space and to show that the family τα, α ∈ SX , is an exhausting family of representations of
ES(X) oX , which leads to the more precise result on the essential spectrum in Theorem
1.1.

Acknowledgments. We thank Vladimir Georgescu for useful discussions and comments.
We also thank Marius Măntoiu for carefully reading the manuscript and for useful com-
ments.

2. CROSSED PRODUCTS AND LOCALIZATIONS AT INFINITY

We now review some basic constructions and results. Most of them are due to Georgescu
and its collaborators.

Let Cu
b(X) denote the subalgebra of bounded uniformly continuous functions on X and

let C0(X) denote its ideal of functions vanishing at infinity. They act naturally on L2(X)
by multiplication We also let K(X) := K(L2(X)) be the ideal of compact operators on
the same space.

Consider a commutative C∗-algebra A with (character) spectrum Â. It consists of the
non-zero algebra morphisms χ : A → C (all morphisms of C∗-algebras considered in this
paper will be ∗-morphisms). If A is unital, then Â is a compact topological space for the
weak topology. In general, it is locally compact and the Gelfand transform ΓA : A →
C0(Â), ΓA(u)(χ) := χ(u), defines an isometric algebra isomorphism. If A ⊂ Cu

b(X) is
invariant for the action of X , then X will act continuously on Â and we shall denote by
A o X the resulting crossed product algebra, see [24, 35]. Here the real vector space X
is regarded as a locally compact, abelian group in the obvious way. Recall [12] that if A
is a translation invariant C∗-subalgebra of Cu

b(X), then an isomorphic realization of the
cross-product algebra A o X is the norm closed subalgebra of B(L2(X)) generated by
the operators of the form u(q)v(p), where u ∈ A and v ∈ C0(X∗). This is an important
feature that we now pause to briefly discuss.

More precisely, we have a natural morphism π0 : A oX → B(L2(X)) obtained from
the canonical actions of A and X on L2(X), since they form a covariant representation
of (A, X, τ) [10, 35]. Let us call this representation the spatial representation of A oX .
The result in [12] is that π0 is injective. Indeed, since X is amenable, we can consider
the reduced cross-product A or X ' A o X , which is defined as the completion of the
algebra generated by m̃fh(p) acting on B(L2(X) ⊗ L2(X)) (two copies!), where m̃f ,
f ∈ A, acts on L2(X) ⊗ L2(X) ' L2(X × X) as the multiplication with the function
(x, y) → f(x − y) and h(p) is the convolution operator in the second variable X of
X × X . Given the special feature of this construction, we can rearrange our action, up
to an isomorphism, to become independent of the first variable, and hence simply a large
multiple of the spatial representation π0, which is hence also injective, and therefore an
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isometry onto its image. For simplicity, we shall identify the abstract algebra AoX with
its (isometric) image trough π0 in B(L2(X)).

We shall need some more specific consequences for the algebra AoX . Recall that an
ideal of aC∗-algebraB is called primitive if it is the kernel of an irreducible representation.
Then the primitive ideal spectrum Prim(B) ofB is the set of primitive ideals ofB [9]. For
each closed two-sided ideal I of B, we denote by PrimI(B) the set of all primitive ideals
of B containing I . The sets of the form PrimI(B) are the closed subsets in a topology
on Prim(B), called the Jacobson topology. If B is commutative, then Prim(B) ∼= B̂ are
naturally homeomorphic, so we may occasionally identify these spaces in what follows.

Definition 2.1. A two sided ideal J of A is essential in A if aJ = 0 implies a = 0.

Let us assume from now on that C0(X) ⊂ A. Then π0(C0(X) o X) consists of the
ideal K(X) of compact operators on L2(X). In particular, the spatial representation π0 is
actually an irreducible representation π0 : A o X → B(L2(X)). A consequence of the
injectivity of the spatial representation π0 is that

Lemma 2.2. The ideal C0(X) oX ⊂ AoX is an essential ideal of AoX .

Proof. Let a ∈ AoX be such that aC0(X)oX = 0. We notice that if T ∈ B(L2(X)) is
a bounded operator such that TK(X) = 0, then T = 0. Then we use this observation for
T = π0(a) conclude that π0(a) = 0 and hence a = 0 by the injectivity of π0. �

We shall need the following remark in the last section.

Remark 2.3. Since the vector representation π0 : AoX → B(L2(X)) is irreducible, the
zero ideal, that is, the kernel of π0, is a primitive ideal of AoX . We let 0 denote the zero
ideal, for simplicity. Then 0 ∈ Prim(A o X). Moreover, {0} is also an open subset of
Prim(AoX) that corresponds to the ideal K(X) of compact operators on L2(X).

Let τa the action of a ∈ X by translations on our algebras of functions. If P is an
operator on L2(X), then its translation by x ∈ X is defined by the relation τx(P ) :=
T ∗xPTx, as in the introduction.

Consider a character χ ∈ Â and define, for u ∈ A, the function τχ(u) : X → C by

(9) τχ(u)(y) := χ(τy(u)) .

Then τχ : A → Cu
b(X) and, if we denote by χx : A → C the evaluation at x, then

τχx = τx, as is seen from the relation τx(u)(y) = u(x + y) = χx(τy(u)). We denote by
τχoX : AoX → Cu

b(X)oX the induced morphism. We have then the following basic
result from [13].

Theorem 2.4. Assume that C0(X) ⊂ A ⊂ Cu
b(X). Then the induced morphism

(10)
∏
χ∈ÂrX τχ oX : AoX −→

∏
χ∈ÂrX C

u
b(X) oX.

has kernel K(X), the ideal of compact operators on L2(X).

In particular, an operator P ∈ AoX is compact if, and only if, τχoX(P ) = 0, for all
χ ∈ ÂrX . Here we have used the fact that every character of a closed, two-sided ideal of
a C∗-algebra extends uniquely to the algebra. In particular, we have thatX ∼= Ĉ0(X) ⊂ Â.
This explains the notation ÂrX . This theorem gives right away the following corollary.
For any P , we define its essential spectrum σess(P ) as the set of those λ ∈ C such that
P − λ is not Fredholm. In case P is unbounded, we regard it as a bounded operator on its
domain endowed with the graph norm.
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Corollary 2.5. If P is in AoX or is affiliated to it, then σess(P ) = ∪χ∈ÂrXσ(τχ(P )).

To successfully use these results, we thus need to identify the spectrum Â of A. It
would be interesting to see the relevance of these results for a questions raised by Exel on
the properties of regular representations for groupoids [11].

3. CHARACTER SPECTRUM AND CHAINS OF SUBSPACES

In this section, we determine the spectrum of ES(X) as a set. The topology will be
discussed in the next section.

Recall that in this paper S denotes a (non empty) semi-lattice of sub-spaces of X , that
is, Z1∩Z2 ∈ S if Z1, Z2 ∈ S. IfX /∈ S, then S ′ = S∪{X} is a semi-lattice of subspaces
of X with ES′(X) = ES(X). There is thus no loss of generality to assume that X ∈ S,
which we shall do from now on.

Remark 3.1. The algebras ES(X) make sense for any non empty family S of sub-spaces
of X . It is convenient however for us to assume that S is a semi-lattice since then S has
a least element Y0 and then ES(X) is isomorphic to ES′(X/Y0), where S ′ is the induced
semi-lattice on X/Y0. We have 0 ∈ S ′, which may not be the case for S. Also note that
C0(X) ⊂ ES(X) if, and only if, 0 ∈ S. In order to apply the results of Section 2, we thus
need to assume that 0 ∈ S. In the important example of the semi-lattice SN mentioned in
the Introduction, we do have that 0 ∈ SN , but that is not true for the semi-lattice generated
just by the subspaces Pij . If 0 /∈ S, then H is among the operators τα(H), so Theorem 1.1
simply asserts that σess(H) = σ(H), which is clear anyway, since H is invariant with
respect to the minimal element of the semi-lattice S , which is non-zero if 0 /∈ S.

3.1. Translation to infinity. The natural projection πY : X → X/Y extends by continu-
ity to a map π̃Y : X r SY → X/Y satisfying π̃Y (SX r SY ) ⊂ SX/Y . More precisely, if
α ∈ SX r SY , then it is a half-line R+a in X , with a ∈ X r Y . Then π̃Y (α) correspond
at the half-line R∗+πY (a) in X/Y . We note, however, that πY will not have a limit at
α ∈ SY . Indeed, for each vector in y ∈ X/Y , we can find a sequence (xn) ∈ X such that

lim
n→+∞

xn = α and lim
n→+∞

πY (xn) = y.

Let α = â ∈ SX (so a 6= 0). As in [14], if u ∈ C(X/Y ), x ∈ X , then

(11) τα(u)(x) := lim
r→+∞

u(ra+ x) =

{
u(x) if α ⊂ Y (i.e., a ∈ Y )
u(π̃Y (α)) ∈ C otherwise

exists, and hence the limit τα(u) exists for all u ∈ Eall(X) (the algebra obtained by consid-
ering the case of all subspaces ofX , as in [14]). In particular, we have that τα(u) ∈ ES(X),
if u ∈ ES(X), and hence τα defines an endomorphism of the algebra ES(X). Note that the
limit defining τα is both in pointwise sense for functions and in strong sense for operators
on L2(X).

For α ∈ SX , we shall denote by χα(f) := f(α), the evaluation character at α for
f ∈ C(X). We have the following lemma [14]

Lemma 3.2. Let Y ⊂ X be a subspace, let B be the C∗–algebra generated by C(X) and
C(X/Y ) in Cbu(X), and let α ∈ SX r SY . Then the character χα of C(X) extends to a
unique character of B. This extension is the restriction of τα to B.

We shall need the following notation. Let α ∈ SX and

(12) Sα := {Y ∈ S| α ⊂ Y } , Z(α) :=
⋂

Y ∈Sα

Y , S/α := {Y/Z(α)| Y ∈ Sα} .
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Then Sα is again a semi-lattice. Therefore Z(α) ∈ Sα since dim(X) < ∞, and hence it
is the smallest element of Sα. Similarly, S/α is the induced semi-lattice of subspaces of
X/Z(α).

The semi-lattices Sα and S/αwill play a fundamental role in what follows. For instance

(13) τα(ES(X)) = ESα(X)

and ESα(X) is naturally isomorphic to ES/α(X/Z(α)) via πZ(α) : X → X/Z(α). We
note that, unlike in the case of all sub-spaces of X , the semi-lattices Sα and S/α depend
on S, and not just on α ∈ SX . The semi-lattice Sα has the useful property that 0 ∈ Sα.

Lemma 3.3. The morphism τα descends to a surjective morphism

τ̃α : ES( )X → ES/α (X/Z(α)) .

Let α ∈ SX , regarded as a half line in X . Let Z(α) be the smallest subspace in S
containing α, as before. Also, let X ′ := X/Z(α) and S ′ := S/α. (Recall that S/α :=
{Y/Z(α) ⊂ X ′| Z(α) ⊂ Y ∈ S}.) Then we consider

(14) τ∗α : ̂ES′(X ′) ∼= Prim(ES/α(X/Z(α))) → ÊS(X) ,

the map dual to τ̃α, that is, τ∗α(χ) := χ ◦ τ̃α. The above lemma gives that τ∗α is continuous
and a homeomorphism onto its image, which is a closed, compact subset of ÊS(X). The
following lemma identifies the image of τ∗α with the set of characters of ES(X) that restrict
to χα on C(X) when C(X) ⊂ ES(X), that is when 0 ∈ S. In view of Remark 3.1, we
assume from now that 0 ∈ S.

Lemma 3.4. Let α ∈ SX and Ωα := {χ ∈ ÊS(X)| χ|C(X) = χα} (recall that 0 ∈ S).
Then

Ωα = Im(τ∗α) ∼= Prim(ES/α(X/Z(α))) .

In other words, we have that a character χ ∈ ÊS(X) restricts to the character χα on
C(X) if, and only if, it is of the form χ = χ′ ◦ τ̃α, for some character χ′ of ES/α(X/Z(α)).

Conversely, given a character χ of ES(X), let us consider its restriction to a character
of C(X) ⊂ ES(X). Hence there exists α ∈ X such that χ = χα on C(X). If α ∈ X ⊂ X ,
then, in fact, χ is uniquely determined by α, since X ∼= Ĉ0(X) and every character of an
ideal extends uniquely to the algebra. In particular, we obtain that X identifies with an
open subset of ÊS(X). We shall write X ⊂ ÊS(X), by abuse of notation. If α /∈ X , we
have that α ∈ SX , and hence χ ∈ Ωα ∼= Prim(ES/α(X/Z(α))).

Lemma 3.5. Assume 0 ∈ S, as before. The restriction map R : ÊS(X) → X associated
to the inclusion C(X) ⊂ ES(X) gives rise to a disjoint union decomposition

ÊS(X) = R−1(X) ∪α∈SX R−1({α}) =: X ∪α∈SX Ωα .

This allows us an inductive determination of the spectrum of ES(X) since Ωα identifies
with the spectrum of ES/α(X/Z(α)). This inductive determination is conveniently formu-
lated in terms of “chains,” which we introduce next. We note that the subsets X and {α}
in the above lemma are exactly the orbits of X acting on X . A similar chain structure has
appeared also in [2, 14].
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3.2. S-chains. The spectrum of the algebra ES(X) is conveniently described in terms of
S-chains −→α := (α1, α2, . . . , αk), in a manner similar, but different to the one in [14]. To
introduce the concept of S-chains, we shall use the notation introduced in 12. An S-chain
−→α := (α1, α2, . . . , αk), 0 ≤ k ≤ dim(X), is required to satisfy the following recursive
conditions, which involves also a sequence Zj that is defined recursively as follows:

(1) Z0 = 0;
(2) αj ∈ SX/Zj−1

, (a half-line in X/Zj−1), j = 1, 2, . . . , k;
(3) Zj ∈ S is the least subspace containing Zj−1 and αj , for j ≤ k.

In (3) above, we have regarded αj ∈ SX/Zj−1
⊂ X/Zj−1 as a half-line in X/Zj−1, and

hence, in turn, as a subset of X . It thus makes sense to ask whether αj is a subset of Zj
or not, since Zj is also a subset of X . In particular, we obtain α1 ∈ SX and Z1 = Z(α1),
that is, Z1 is the least subspace of S containing α1.

We shall say that the S-chain −→α := (α1, α2, . . . , αk) has length k. There is only one
S-chain of length zero: the empty set ∅.

The S-chain −→α := (α1, α2, . . . , αk) determines the spaces Zj , 0 ≤ j ≤ k, as follows.
Let α′j ∈ X be a representative of αj ∈ SX/Zj−1

. That is, αj = R∗+α′j +Zj−1 ⊂ Zj ∈ S.
Let us fix 1 ≤ r ≤ k. The subspace [α′1, α

′
2, . . . , α

′
r] ⊂ X linearly generated by the

vectors α′1, α
′
2, . . . , α

′
r, may depend on the choices of the α′j , but the least subspace Z ⊂ S

containing [α′1, α
′
2, . . . , α

′
r] will not depend on the choices of the representatives α′j and

Zr = Z. We shall thus occasionally also use the more complete notation

(15) Z(α1, α2, . . . , αj) := Zj

and Z(−→α ) := Z(α1, α2, . . . , αk) if −→α has length k. If −→α = ∅ (that is, if k = 0), we let
Z(−→α ) = 0. The symbol Ξ̃

(k)
X will denote the set of S-chains of length k.

A sequence 0 6= Z1 $ Z2 $ . . . $ Zk of subspaces in S will be called an S-flag (of
length k). Each S-flags of length k corresponds to at least one S-chains of length k.

An augmented S-chain is a pair (a,−→α ), where −→α is an S-chain and a ∈ X/Z(−→α ). By
Ξ

(k)
X we shall denote the set of augmented S-chains of length k:

(16) Ξ
(k)
X := {(a,−→α )| −→α = (α1, α2, . . . , αk) ∈ Ξ̃

(k)
X , a ∈ X/Z(−→α )} .

We let ΞX := ∪kΞ
(k)
X denote the set of all augmented S-chains.

Assume (a,−→α ) = (a, α1, α2, . . . , αk) ∈ ΞX and let Sj := {Y/Zj | Zj ⊂ Y, Y ∈ S}
be the induced semi-lattice of subspaces of X/Zj , as before, see Equation (15). We obtain
for each j (so αj ∈ X/Zj−1) a morphism

(17) τ̃αj : ESj−1(X/Zj−1) → ESj (X/Zj) .

Recall that if a ∈ X , the character χa : ES(X)→ C is the evaluation at a.

Definition 3.6. For each augmented S-chain (a,−→α ) := (a, α1, α2, . . . , αk) ∈ Ξ
(k)
X , we

define

τ−→α := τ̃αk ◦ τ̃αk−1
◦ . . . ◦ τ̃α1 : ES(X) → ESk(X/Zk) = ES/−→α (X/Z(−→α ))

and χa,−→α := χa ◦ τ−→α : ES(X)→ C.

Since the map τ−→α of Definition 3.6 is a composition of C∗-algebra morphisms, it is a
C∗-algebra morphism itself, and hence χa,−→α defines a character of ES(X).

Lemma 3.7. The composite morphism τ−→α : ES(X)→ ES/−→α (X/Z(−→α )) of Definition 3.6
is surjective.
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It will be convenient to use also the more complete notation

S/(α1, α2, . . . , αj) := { Y/Z(α1, α2, . . . αj) | [α′1, α′2 . . . α′j ] ⊂ Y ∈ S } = Sj .

Proof. The first assertion is a successive application of lemma 3.3. More precisely, we
have the following sequence of surjective maps:

ES(X)
τα1

−−→ ES/α1
(X/Z(α1))

τα2

−−→ ES/(α1,α2)(X/Z(α1, α2))
τα3

−−→

. . .
ταk
−−→ ES/−→α (X/Z(−→α ))

Then the second assertion is direct consequence of the first one because, if a ∈ X/Z(−→α ),
then χa is a character of ES/−→α (X/Z(−→α )). �

Remark 3.8. We distinguish two special cases :

• If −→α = ∅, we have τ−→α = Id, and hence χa,∅ := χa (a ∈ X).
• If Z(−→α ) = X , we have χa,−→α := τ−→α , since there is only one a ∈ X/X = 0.

We obtain that the spectrum of our algebra ES(X) identifies naturally with the set ΞX
of augmented S-chains.

Theorem 3.9. Assume that 0 ∈ S, then we have a bijective map Θ : ΞX → ÊS(X),

Θ(a,−→α ) := χa,−→α := χaτ−→α .

Proof. The proof is obtained by induction on dim(X), using Lemmas 3.3 and 3.4. �

Let us explain now how the characters χa,−→α act on ES(X). If Z ⊂ Y ⊂ X , we shall
use the similar notation πY/Z : X/Z → X/Y for the linear projection, which we extend
by continuity to π̃Y/Z : X/Z \ SY/Z → X/Y .

Remark 3.10. Let (a,−→α ) ∈ ΞX .

(1) If −→α = ∅, then (a,−→α ) = a and

χ(a,∅)(f) = χa(f) = f(a) .

(2) If −→α 6= ∅ has length k ≥ 1 and f ∈ C(X/Y ), with Y ∈ S, we have

(18) χ(a,−→α )(f) =

{
f(πY/Z(−→α )(a)) if Z(−→α ) ⊂ Y
f(π̃Y/Zp−1

(αp)) if Zp−1 ⊂ Y, but Zp 6⊂ Y .

In the first case of Equation (18), πY/Z(−→α )(a) ∈ X/Y is well defined since a ∈ X/Z(−→a )

and Z(−→a ) ⊂ Y . In the second case, the index 0 < p ≤ k is determined to be the largest
satisfying Zp−1 := Z(α1, . . . , αp−1) ⊂ Y , (so Zp := Z(α1, . . . , αp) 6⊂ Y ). This follows
by repeatedly using Equation (11). We also notice that the relation Zp 6⊂ Y is equivalent to
αp /∈ Y/Zp−1. Again, π̃Y/Z(−→α )(αp) ∈ SX/Y is defined since αp ∈ SX/Zp−1

, Zp−1 ⊂ Y ,
and αp /∈ SY/Zp−1

. See the definition of the extensions π̃Y at the beginning of this section.

From this remark it follows that the induced action of X on the set of augmented S-
chains ΞX is by translation on the first component:

(19) x · (a,−→α ) = (πZ(−→α )(x) + a,−→α ) , x ∈ X, and (a,−→α ) ∈ ΞX .

In particular, if Z(−→α ) = X , then −→α is invariant for the action of X .
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Remark 3.11. As in [14], if χ is the character of ES(X) associated to the augmented S-
chain (a,−→α ), then τχ(P ) = τaτ−→α (P ) for P ∈ ES(X), and hence, also for P ∈ ES(X) o
X . This identifies all limit operators associated to P . The defintion of τχ from [13] was
recalled in Section 2.

We would like next to study the topology on the space ÊS(X) of characters of ES(X)

and the topology that it induces on ΞX := ∪0≤k≤dim(X)Ξ
(k)
X , since this will be useful in

proving that the family of morphisms {τα| α ∈ SX} is exhaustive (the notion of exhausting
families was introduced in [23] and will be recalled in the last section (see Definition 6.3).

4. THE TOPOLOGY ON THE SPECTRUM OF ES(X)

We now give a first description of the topology on the spectrum of ES(X) by identifying
it with a closed subset of the product

∏
Y ∈S X/Y . We continue to assume in this section

and thereafter, for simplicity, that 0, X ∈ S, even if some results hold in greater generality.
For each closed two-sided ideal I of A, we denote by PrimI(A) := Prim(A) r

PrimI(A) the set of primitive ideals of A that do not contain I . (The sets of the form
PrimI(A) are thus the open subsets of Prim(A) in the the Jacobson topology). Recall the
definition of an essential ideal (Definition 2.1). We have:

Proposition 4.1. If J is an essential ideal of A then PrimJ(A) is dense in Prim(A).

The converse is obviously true.

Remark 4.2. We shall use this result for ES(X) and C0(X) and for their cross-products
by X . In the first case, that is, for A = ES(X) and J = C0(X), it follows from the
definition that C0(X) is essential in ES(X) (since it is essential in Cu

b(X)), and hence that
X ∼= Ĉ0(X) (or rather that its image) is dense in ÊS(X). In the second case, that is for
J := K(X) ∼= C0(X) oX ⊂ ES(X) oX =: A, we have already seen in Remark 2.3 that
PrimJ = {0}. Indeed, this follows by taking A := ES(X) in that remark. It thus follows
that 0 is a dense point in the primitive ideal spectrum of ES(X)oX: {0} = Prim(AoX).

Let us combine all projections πY : X → X/Y into GS(x) := (πY (x))Y ∈S ,

(20) GS :=
∏
Y ∈S

πY : X →
∏
Y ∈S

X/Y .

Let us similarly consider all the restrictions ÊS(X) → ̂C(X/Y ) ∼= X/Y . Combining all
these restrictions, we obtain the map Φ : ÊS(X)→

∏
Y ∈S

X/Y

(21) Φ(χ) = (xY ) ∈
∏
Y ∈S

X/Y , where χ(f) = f(xY ) , f ∈ C(X/Y ), Y ∈ S .

Lemma 4.3. The map Φ of Equation (21) is continuous and a homeomorphism onto its
image.

Proof. The continuity of Φ is due to the fact that the dual map defined by restriction for
characters is continuous. The injectivity comes from the fact that the algebras C(X/Y )
generate ES(X). The proof is completed by recalling that a continuous bijection of com-
pact spaces is a homeomorphism. �

See [20, 25] and the references therein for more results of this type and other applica-
tions. Let j : X → ÊS(X) be the inclusion defined by C0(X) ⊂ ES(X). Also, recall the
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map Φ defined in Equation (21) and GS defined in Equation (20). The following theorem
describes the topology on ÊS(X).

Theorem 4.4. The following diagram is commutative

(22) ÊS(X)
Φ // ∏

Y ∈S
X/Y

X

j

``

GS

<<

In particular, Φ induces a homeomorphism of ÊS(X) onto GS(X) that is functorial in S.

Proof. Each component of the composition Φ ◦ j is obtained by extending a character
χx of C0(X/Y ) to ES(X) and then restricting to C(X/Y ). This extension is unique and
correspoinds to the evaluation at x, that is, to χx. Since C0(X) is an essential ideal in
ES(X), X is dense in ÊS(X). By continuity

Φ(ÊS(X)) ⊂ Φ(j(X)) = GS(X) .

Moreover, the image containsX and is closed, since it is compact. Hence we have equality.
The result then follows from Lemma 4.3. �

The functoriality in S refers to the inclusion ES(X) ⊂ ES′(X) if S ⊂ S ′.
The meaning of Theorem 4.4 is that it provides also an elementary geometric construc-

tion of the space ÊS(X), which, as we have already mentioned, may be useful for nu-
merical methods. The description of the topology on ÊS(X) is, however, not completely
satisfactory at this point, since we do not have a good understanding of GS(X) yet. We
have good reasons to believe, however, that it is a manifold with corners obtained by suc-
cessively blowing-up the singular strata and that it coincides with a space introduced by
Vasy [34].

A natural question then is to identify the composite map Φ◦Θ : ΞX → GS(X). Recall
that πY/Z : X/Z → X/Y is, as usual, the projection, and that it extends to a continuous

map π̃Y/Z : X/Z r SY/Z → X/Y . Given that Φ : ÊS(X) →
∏
Y ∈S X/Y is defined by

restrictions to the generating subalgebras C(X/Y ), see (21), Remark 3.10 tells us that the
Y component

(
Φ(χ(a,−→α ))

)
Y
∈ X/Y of Φ(χ(a,−→α )) ∈

∏
Y ∈S X/Y is

(23)
(
Φ(χ(a,−→α ))

)
Y

=

{
πY/Z(−→α )(a) if Z(−→α ) ⊂ Y
π̃Y/Zp−1

(αp) if Zp−1 ⊂ Y, but Zp 6⊂ Y ,

where we have used the notation of that remark. Let −→α = (α1, . . . , αk). We note that the
component of Φ(χ(a,−→α )) corresponding to Y = Zj , j = 0, . . . , k − 1, is αj+1, whereas
the component of Φ(χ(a,−→α )) corresponding to Y = Zk is a. Thus all other components of
Φ(χ(a,−→α )) = Φ(Θ(a,−→α )) are determined by these components (a and αj), as explained.
More precisely, to determine the Y ∈ S component of Φ(χ(a,−→α )), we need to find the
largest p such that Zp−1 ⊂ Y , and then the component corresponding to Y will be the
projection onto X/Y of αp, if p < k, or of a, if p = k.

Let us consider the augmented S-chains (a,−→α ) ∈ Ξ
(k)
X that have the same fixed S-

flag Z := (Z1, Z2, ..., Zk), where Zj := Z(α1, α2, . . . , αj) ∈ S , as before, and hence
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Z1 ⊂ Z2 ⊂ . . . ⊂ Zk. If −→α = (α1, α2, . . . , αk), then α1 ∈ Y1 := SZ1
r ∪Y ∈S,Y$Z1

SY ,
and this set has a natural smooth structure and hence a natural topology. Similarly,

αj ∈ Yj := SZj/Zj−1
r ∪Y ∈S,Zj−1⊂Y$ZjSY/Zj−1

,

and hence we can endow the set of S-chains with the given flag Z with the induced topol-
ogy of the product manifold Y1 × Y2 × . . .× Yk and the set of augmented S-chains with
the given flag Z with the induced topology of the product manifold

(24) XZ := X/Z(−→α )× Y1 × Y2 × . . .× Yk .

We then see that Φ◦Θ restricts to a diffeomorphism fromXZ onto its image in
∏
Y ∈S X/Y .

Indeed, it is enough to consider the components of Φ ◦ Θ(a,−→α ) corresponding to all Zj ,
j = 0, . . . , k (with Yj projecting onto X/Zj−1). Clearly, all the sets Φ ◦ Θ(XZ) are dis-
joint and GS(X) = ∪ZΦ ◦ Θ(XZ), since to each augmented S-chain there corresponds
exactly one S-flag.

We endow the set of S-flags with the lexicographic order. Namely, let us consider the
S-flags Z := (Z1, Z2, . . . , Zk) and Z ′ := (Z ′1, Z

′
2, . . . , Z

′
n). Then

(25) Z < Z ′ ⇔ Z1 = Z ′1 , Z2 = Z ′2 , . . . , Zj−1 = Z ′j−1 , and Zj % Z ′j ,

for some j ≤ min{k, n}. Clearly, if Z ′ < Z ′′ and Z < Z ′, then Z < Z ′′. We can now
look at the relation between the sets Φ ◦Θ(XZ).

Lemma 4.5. Let Z and Z ′ be two S-flags such that Φ ◦ Θ(XZ′) intersects the closure of
Φ ◦Θ(XZ). Then Z < Z ′.

Proof. Let j ≥ 1 be the smallest integer such that Z0 = Z ′0, Z1 = Z ′1, Z2 = Z ′2,
. . . , Zj−1 = Z ′j−1, but Z ′j 6= Zj . Let (a′,−→α ′) = (a′, α′1, α

′
2, . . . , α

′
n) be an aug-

mented S-chain with flag Z ′ that maps to the closure of Φ ◦ Θ(XZ). Then each Y -
component of Φ(Θ(a′,−→α ′)) is the limit of Y -components of points in XZ , Y ∈ S. This
is true, in particular, for the Zj−1 component, which is in X/Zj−1. Then we see that
α′j ∈ SZj/Zj−1

⊂ Zj/Zj−1, which gives Z ′j ⊂ Zj , since Z ′j is the least subspace of S
containing Z ′j−1 = Zj−1 ⊂ Zj and α′j . Hence Z < Z ′, by definition. �

Recall that a set in a topological space is locally closed if it is open in its closure, or,
which is the same thing, if it is the intersection of an open subset and of a closed subset.
We shall need the following corollary.

Corollary 4.6. If S is finite, then for each S-flag Z , the set Φ ◦Θ(XZ) is locally closed in
GS(X).

Proof. Let F be the union of all the sets Φ ◦Θ(XZ′) with Z < Z ′. Lemma 4.5 shows that
the sets F and F ∪ Φ ◦Θ(XZ) are closed, since “<” is transitive. �

5. GEORGESCU’S ALGEBRA

We now use the results of the previous subsection to obtain a quotient topology descrip-
tion of the topology on the spectrum of Georgescu’s graded algebras [5].

Let us start from the same data: that is, we continue to assume that X is a finite dimen-
sion vector space and that S is a family of linear spaces of X such that 0, X ∈ S . In the
framework of the true N -body problems, the interactions vanish at infinity, so it is more
natural to consider the following algebra of interactions (potentials)

(26) GS(X) := 〈C0(X/Y )〉 , Y ∈ S ,
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see [5] and the references therein. Notice that X ∈ S implies that 1 ∈ GS(X).
As for the algebra ES(X), we want to describe the spectrum of the C∗−algebra GS(X).

Since the natural map ι : GS(X) ⊂ ES(X) is an inclusion (injective), we have that the
resulting dual map

(27) ι∗ : ÊS(X) → ĜS(X) , ι∗(χ) := χ|GS(X) ,

is continuous and onto. As we already know explicitly ÊS(X), it remains to determine the
equivalence relation induced by ι∗.

Let Y ∈ S and f ∈ C0(X/Y ). Using Equation (18), we obtain

(28) χ(a,−→α )(ι(f)) =

{
f(πY/Z(−→α )(a)) if Z(−→α ) ⊆ Y
0 otherwise

In summary the spectrum of the Georgescu algebra is then given by the following theorem.

Theorem 5.1. Let 0, X ∈ S. The space ĜS(X) has the quotient topology for the map

(29) ι∗ : ÊS(X) → ĜS(X) , ι∗(χ) := χ|GS(X) ,

Moreover two characters (a,−→α ) and (b,
−→
β ) in ΞX are equal on GS(X) if and only if

Z(−→α ) = Z(
−→
β ) and a = b ∈ X/Z(−→α ) = X/Z(

−→
β ).

It is known that ĜS(X) is in a natural bijection with the disjoint union of the spaces
X/Y , Y ∈ S [18]. The restriction map ι∗ then becomes ι∗(a,−→α ) = a ∈ X/Y for
Y = Z(−→α ). In particular, on each of the sets XZ := X/Z(−→α ) × Y1 × Y2 × . . . × Yk
(see Equation 24), the map ι∗ is simply the projection onto X/Z(−→α ). This completely
describes the topology on the quotient of this space as collapsing the “complicated part”
Y1 × Y2 × . . . × Yk. We note, however, that several spaces of the form XZ may map to
the same space X/Z(−→α ), so further identifications may be in order.

Of course, the main point of our result is our belief that the space ÊS(X) has a topology
that is less singular than that of ĜS(X). This seems to be justified by our preliminary
results (see also [17, 18]) and we plan to pursue further this question in another publication.
The concept from [20, 25] of “asymptotically independent” subalgebras of Cu

b(X) may be
useful here.

6. EXHAUSTING FAMILIES AND A PRECISE RESULT ON THE ESSENTIAL SPECTRUM

In order to apply our results to Hamiltonians such as the one given in Equation (2),
we need to study the cross-product C∗-algebra ES(X) o X . This C∗algebra is noncom-
mutative, so we will consider exclusively its primitive ideal spectrum. We assume in this
section that S is finite in order to use Corollary 4.6 and hence to be able to use the results
in [35]. In particular, its spectrum ÊS(X) ∼= Prim(ES(X)) is second countable (i.e. it will
have a countable basis of open subsets). Moreover, as we will see below, the action of X
on ÊS(X) has locally closed orbits. This means that the primitive ideal spectrum of the
cross-product C∗-algebra ES(X) o X can be completely understood using, for instance,
the theory explained in [10, 35].

More precisely, let us consider an arbitrary locally compact, second countable space Ω
and assume that a locally compact, second countable, abelian group G, acts continuously
on Ω. For simplicity, we shall assume that the orbits of G are locally closed in Ω, that is,
that each orbit is open in its closure in Ω. The primitive ideal spectrum of C0(Ω) oG then
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consists of the set of pairs (O, ξ), where O is an orbit of G in Ω and ξ is a character of
the stabilizer GO of O. (Recall that the stabilizer of the orbit O := Gω is given by the
set Gω := {g ∈ G| gω = ω}, and this is independent of ω in the orbit O, since G is
commutative.) Moreover, the topology is the quotient topology of Ω × Ĝ with respect to
the quotient map

ΨΩ,G : Ω× Ĝ → Prim(C0(Ω) oG) ,

given by ΨΩ,G(ω, χ) := (Gω,χ|Gω ), see Theorem 8.39 in [35] for details. This map is
also natural with respect to restriction morphisms, in the following sense:

Proposition 6.1. Assume that Ω′ ⊂ Ω is a closed, G-invariant subset, with Ω and G
locally compact, second countable, as above. Then Ω′ also has locally closed orbits and
the inclusion j : Ω′ → Ω induces a surjective morphism joG : C0(Ω)oG→ C0(Ω′)oG
and hence an injective map (j oG)∗ : Prim(C0(Ω′)oG)→ Prim(C0(Ω)oG) such that

(j oG)∗ ◦ΨΩ′,G = ΨΩ,G ◦ (j × id) : Ω′ × Ĝ → Prim(C0(Ω) oG) .

A similar statement holds for open inclusions (but with the arrows reversed).

Proof. This follows from the fact that the stabilizer of ω ∈ Ω′ is the same as that of ω
regarded as a point in Ω. See the proof of the Theorem 8.39 in [35]. �

We shall need the following corollary.

Corollary 6.2. If the space Ω of Proposition 6.1 is a union Ω = ∪α∈IΩα of closed,
invariant subsets (jα : Ωα → Ω the inclusion), then Prim(C0(Ω) o G) is the disjoint
union

Prim(C0(Ω) oG) = ∪α∈I(jα oG)∗(Prim(C0(Ωα) oG)) .

Proof. This follows from Proposition 6.1 using the fact that Ω× Ĝ = ∪α∈IΩα × Ĝ. �

Let φ be a ∗-morphism between two C∗-algebras A and B. The support supp(φ) =
Primker(φ)(A) of φ is the set of primitive ideals containing ker(φ). If φ is surjective, its
support is the image of φ∗ : Prim(B) → Prim(A) (which is defined in this particular
case). We shall need the concept of exhausting families [23].

Definition 6.3. A set of ∗-morphisms F = {φ : A → Bφ} of a C∗-algebra A is called
exhausting if Prim(A) = ∪φ∈F supp(φ).

We thus obtain the following corollary.

Corollary 6.4. Let us use the notation of Corollary 6.2. Then the family of morphisms
{jα oG| α ∈ I} is exhausting.

Proof. The support of jαoG is the image of Prim(C0(Ωα)oG). The result then follows
from Corollary 6.2. �

Let Ω := ÊS(X)rX . We now proceed to study Prim(ES(X)oX) and Prim(C(Ω)o
X) using the results in [10, 35]. We first establish that the orbits are locally closed, using
the results of the previous sections.

First of all, recall that, by Theorem 3.9, the set ÊS(X) identifies with the set of aug-
mented S-chains (a,−→α ), with X acting only on a ∈ X/Z(−→α ) by translations, see (19).
Hence the set of all orbits of X acting on ÊS(X) is in bijection with the set of all S-chains.
In particular, each of the sets XZ introduced in Equation (24) is X invariant and has closed
orbits. Here, of course, Z is the S-flag associated to any augmented S-chain in an orbit of
XZ . Corollary 4.6 then yields the following result.
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Lemma 6.5. The orbits of X acting on ÊS(X) and Ω := ÊS(X) rX are locally closed.

Recalling that the set of all orbits of X acting on ÊS(X) is in natural bijection with
the set of all S-chains, Equation (19), gives that the stabilizer of the orbit associated to
the S-chain −→α is Z(−→α ). Therefore Prim(ES(X) oX) identifies the set of pairs (−→α , ζ),
where −→α is an S-chain and ζ a character of Z(−→α ).

In particular, since X is a single orbit in ÊS(X) (corresponding to the empty chain) and
has stabilizer 0, it will contribute a single point to Prim(ES(X) oX), by Proposition 6.1
applied to the open inclusion X ⊂ ÊS(X). Moreover, this point is the spectrum of the
algebra C0(X) oX ∼= K(X). The orbits of X on Ω := ÊS(X) rX will thus correspond
to the non-empty S-chains and we have a canonical isomorphism

(30) ES(X) oX/K(X) ' C(Ω) oX.

(This isomorphism is also simply a consequence of the exact sequence obtained by taking
the crossed product by X of the exact sequence 0 → C0(X) → ES(X) → C(Ω) → 0.)
See also Remarks 2.3 and 4.2.

We now study Prim(ES(X) oX), which is our primary interest. Let α ∈ SX and let
Ωα := {χ ∈ ÊS(X)| χ|C(X) = χα} be the set of characters of ES(X) that restrict to χα
on C(X), as in Lemma 3.4. We obtain that

(31) Ω = ∪α∈SXΩα ,

a disjoint union of closed subsets, with Ωα the image of τ∗α acting on the primitive ideal
spectrum of ES/α(X/Z(α)), see Lemma 3.5.

Theorem 6.6. Let S be a finite semi-lattice of sub-spaces of X such that 0, X ∈ S. For
each α ∈ SX , we consider the map ταoX : ES(X)oX → ESα(X)oX . Then the family
{ταoX}α∈SX is an exhausting family of morphisms of theC∗-algebra ES(X)oX/K(X).

Proof. We have ES(X)oX/K(X) ∼= C(Ω)oX , see Equation 30. The morphisms ταoX
then correspond to jαoX , where jα is the restriction morphism from C(Ω) to C(Ωα). The
result then follows from Corollary 6.4. (Note that we are in position to use this corollary
in view of Lemma 6.5.) �

Let us notice that the morphisms τα o X considered in the previous theorem were
denoted simply τα before. Reverting to the original notation, for simplicity, we obtain

σess(P ) := σES(X)oX/K(X)(P ) = ∪ασ(τα(P )) ,

for P ∈ ES(X) o X/K(X), where the first equality is valid by our definition of the
essential spectrum and the second one is valid since the family τα is an exhausting family
of representations of ES(X) o X/K(X), which allows us to use the results of [23]. It
was proved in [13] (see also [23]) that we can extend this property to affiliated operators.
Therefore, by taking P := (H + i)−1, for H as in Theorem 1.1, we obtain

σess(H) = ∪ασ(τα(H)) .

This completes the proof of Theorem 1.1.
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