
TRANSLATION OF DOLBEAULT REPRESENTATIONS

N. PRUDHON

Abstract. We adapt techniques used in the study of the cubic Dirac operator on homo-
geneous reductive spaces to Dolbeault operators on elliptic coadjoint orbits. We prove that
cohomologically induced representations have an infinitesimal character, that cohomological
induction and Zuckerman translation functor commute and we give a geometric interpreta-
tion of the Zuckerman translation functor for cohomologically induced representations .

Introduction

In their proof of a conjecture of Vogan on Dirac cohomology for semisimple Lie groups

Huang and Pandžić [HP02] introduced a differential complex whose differential is given by

the graded commutator with the algebraic Dirac operator. The cohomology of this complex

is computed using its commutative analogue given by the symbol map. Later Alekseev and

Meinrenken [AM00, AM05] gave an interpretation of their computation in terms of the non-

commutative Weil algebra and the Chern-Weil homomorphism that eventually leads to an

easy proof of the Duflo theorem for quadratic Lie algebras as well as a theorem of Rouviere

for symmetric pairs. Here we apply these powerful techniques to Dolbeault operators instead

and recover easily some already known results on representation theory. In particular we

show that Dolbeault cohomology representations have an infinitesimal character, that the

Zuckerman translation functor is well defined in this geometric context and commutes with

Dolbeault cohomology induction. Moreover we give a simple geometric interpretation of the

Zuckerman translation functor for these modules. In fact it turns out to be the projection

onto the fibers of the vector bundles involved. This also includes a proof of a theorem of

Casselman and Osborne as well as results of Kostant on u-cohomology. Similar proofs of

Casselman-Osborne theorem also appear in [HPR05] and an unpublished work of M. Duflo

[Duf83].

Let G be a connected real reductive Lie group with complexified Lie algebra g. By reductive

we mean that g decomposes as [g, g]+ z, where z denotes the center of g. If K/Z is a maximal

compact subgroup of G/Z, where Z is the center of G, then K is the fixed point group of
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a Cartan involution θ of G. Write g = k + s for the corresponding Cartan decomposition of

g, where k is the complexified Lie algebra of K. Assume that G is a real form of a complex

reductive Lie group GC. We have Lie(GC) = g. We fix an Ad(G)-invariant bilinear form

B on g that coincides with the Killing form on [g, g]. For reductive subgroups of G their

corresponding complexified Lie algebra will be denoted by the corresponding German letter.

If H is a closed connected reductive θ-stable subgroup of G and (V, τ) a finite-dimensional

representation of H, we then have a finite rank complex vector bundle V = G ×H V over

G/H. We will consider smooth sections of such a vector bundle. This space Γ(V ) of smooth

sections is identified with the spaces (C∞(G)⊗V )H or C∞(G, V )H . If V is a smooth infinite-

dimensional representation of H, this last space is still well defined, and the tensor product

in the first space stands for the projective tensor product (see [Gro95]). They are again

canonically isomorphic and we continue to call them the space of sections of the associated

infinite-dimensional bundle. The homogeneous spaces we will consider in the sequel are elliptic

coadjoint orbits. These spaces may be realized as measurable open G-orbits Y = G/H in a

complex flag manifold Z = GC/Q of the complexified Lie group GC. The definition of an open

measurable G-orbit is given in [Wol69] as well as the following facts. A base point z0 ∈ Y
may be chosen so that Q = StabGC(z0), and H = Q∩Q = StabG(z0) contains a fundamental

Cartan subgroup T of G. One may also assume that h is the centralizer of a compact torus

t′ ⊂ t ∩ k. So there exists ξ0 ∈ t′ such that ad ξ0 has real eigenvalues, h is the centralizer of

ξ0 and u is the sum of the eigenspaces of ad ξ0 corresponding to the positive eigenvalues, and

q = h ⊕ u. It can then be shown that the homogeneous space Y = G/H is isomorphic to a

coadjoint elliptic orbit and that all coadjoint elliptic orbit arise in this way.

As an open submanifold of a complex manifold, Y is a complex manifold as well with a

G-invariant complex structure. Under these assumptions the antiholomorphic tangent space

at the origin is u. Moreover u and u are isotropic subspaces in duality under B. So we

will identify u∗ and u. Let us now define a twisted Dolbeault operator. It is a G-invariant

differential operator on the bundle G ×H (∧•u∗ ⊗ E) where E is a smooth representation of

H. Let Xi be a basis of u, ξi the dual basis. We denote by r(Xi) the left invariant vector field

on G defined by right derivative and e(ξi) (resp. ι(Xi)) the exterior product (resp. interior

product) on ∧•u∗. The twisted Dolbeault operator is defined by

(1) ∂(E) =
∑
i

r(Xi)⊗ e(ξi)⊗ IE −
∑
i<j

1⊗ e(ξi)e(ξj)ι([Xi, Xj ])⊗ IE
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It defines a differential complex on the bundle G×H (∧•u∗ ⊗ E) whose cohomology H∂(E) is

known as Dolbeault cohomology. Again when E is any smooth representation of H, the oper-

ator in equation (1) is well defined. Wong proved [Won95, Won99] that the cohomology of the

Dolbeault operator is a smooth admissible G-module which is a maximal globalization of its

underlying Harish-Chandra module namely the cohomologically induced Zuckerman module

R∗(E). The main step is to prove that the operator ∂(E) has closed range, which is a deep

and difficult result. Once this is done, the results on the cohomologically induced Zuckerman

module R∗(E) apply. In particular, Wong deduces that when E has an infinitesimal character

then the cohomology space H∂(E) also has an infinitesimal character. One may also probably

deduce the compatibility of Dolbeault cohomology with the Zuckerman translation functor

from Wong’s result. The main goal of this paper is to recover (resp. prove) these results on

infinitesimal character and translations with a method that connects the Dolbeault theory

with Dirac theory.

More precisely we obtain the following results. The representation of G on (C∞(G)⊗∧•u∗⊗
E)H commutes with the Dolbeault operator. Hence its derivative also commutes with the

Dolbeault operator and goes down to a well defined representation of the enveloping algebra

U(g). Its restriction to the center Z(g) of U(g) is given by the following theorem.

Theorem 0.1. Let E be a smooth representation of H which is Z(h) finite. Let us write

E = ⊕µE(µ) for its decomposition in primary component such that E(µ) has generalized

infinitesimal character χµ. Assume that each E(µ) is a smooth H-module. Then the G-

module H∂(E(µ)) has a generalized infinitesimal character corresponding to µ+ρ(u) under the

Harish-Chandra isomorphism and H∂(E) = ⊕µH∂(E(µ)).

Let E(µ) be a smooth representation of H with generalized infinitesimal character χµ. Let

F ν be a finite-dimensional irreducible representation ofG with highest weight ν. Its restriction

to the connected group H has a subrepresentation isomorphic to the representation Eν . Hence

we get a homomorphism of smooth representations of H

iHµ,ν : E(µ)⊗ Eν → E(µ)⊗ F ν .

This map induces a G-equivariant map (see Proposition 3.6)

iGµ,ν : C∞(G,∧•u∗ ⊗ E(µ)⊗ Eν)H → C∞(G,∧•u∗ ⊗ E(µ))H ⊗ F ν

Theorem 0.2. The map iGµ,ν goes down to cohomology

iGµ,ν : H∂(E(µ)⊗Eν) → H∂(E(µ)) ⊗ F
ν .
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Let E(µ + ν) be the component of E(µ) ⊗ Eν with generalized infinitesimal character

χµ+ν . Let iGµ+ν be the restriction of iGµ,ν to the subbundle of G ×H (∧•u∗ ⊗ E(µ) ⊗ Eν)

corrsesponding to E(µ + ν). It still goes down to a well defined map in cohomology thanks

to Theorem 0.1. Moreover thanks to Theorem 0.1 again and a theorem of Kostant, the

representation H∂(E(µ))⊗F
ν is a Z(g) finite U(g)-module. We look at its primary component

with generalized infinitesimal character χµ+ν+ρ(u). Assume that

(C) µ+ ρ(u) + ν is at least singular as µ+ ρ(u) .

Theorem 0.3. Under condition (C) the map

iGµ+ν : H∂(E(µ+ν)) → H∂(E(µ)) ⊗ F
ν

is a one-to-one G-map onto the Z(g)-primary component of H∂(E(µ)) ⊗ F
ν corresponding to

µ+ ρ(u) + ν under the Harish-Chandra isomorphism.

Let Ψ be the Zuckerman translation functor. Theorem 0.3 reads as follows.

Corollary 0.4. Under condition (C) the map iGµ+ν induces a G-isomorphism

Ψ
µ+ρ(u)+ν
µ+ρ(u) (H∂(E)) ' H∂(Ψµ+νµ (E)) .

This theorem is the geometric analogue of the corresponding theorem on cohomological

induction. A precise statement is given in [KV95] as Theorem 7.237. The proofs we will

give here apply as well if one replaces the space of sections C∞(G,∧•u∗ ⊗ E)H by the space

HomH(U(g)⊗∧•u, E). The abstract Dolbeault operator still defines on this space a differential

complex whose cohomology is precisely the cohomologically induced module R•(E). So as

we claimed in the abstract we will prove Theorem 7.237 in [KV95] as well.

The author want to thank Leticia Barchini, Michel Duflo, Salah Mehdi, Martin Olbrich,

Pavle Pandžić and David Vogan for their interest and useful discussions or comments. The

author also thank the anonymous referee for his/her thorough review and highly appreciate

the comments and suggestions.

1. Differential operators on homogeneous spaces

Let ] : U(h) → U(h) be the antipode. This is the antiautomorphism of U(h) given by

X] = −X on h. Hence for X1, . . . , Xn ∈ h,

(X1 · · ·Xn)] = (−1)nXn · · ·X1 .
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We consider U(g) as a right U(h)-module for the right multiplication. The space End(V )

of continuous linear endomorphisms of the smooth representation (V, τ) of the group H is

viewed as a left U(h)-module with the action given by

(∀h ∈ U(h), T ∈ End(V )) h · T = T ◦ τ(h]) .

Let J be the left ideal of (U(g)⊗ End(V )) generated by elements of the form

u · h⊗ T − u⊗ h · T (u ∈ U(g) , h ∈ U(h) , T ∈ End(V ))

Then the amalgamated tensor product over U(h) is given by

U(g)⊗U(h) End(V ) = (U(g)⊗ End(V )) /J

Let q be the quotient map from U(g)⊗End(V ) to (U(g)⊗ End(V )) /J . The action Ad⊗Ad

of H on the tensor product leaves J stable, and hence induces an action of H on the quotient.

The invariant space for this action is the image of the H-invariants in the tensor product

under q so that

q : (U(g)⊗ End(V ))H →
(
U(g)⊗U(h) End(V )

)H
First note the following lemma.

Lemma 1.1. [KR00] 1. The left U(g)⊗ End(V )-ideal J is generated by the elements of the

form

Y ⊗ I + 1⊗ τ(Y ) (Y ∈ h) .

2. The module JH of H-invariant elements in J is a two-sided ideal of the algebra

(U(g)⊗ End(V ))H and is the kernel of q.

This implies in particular that the space
(
U(g)⊗U(h) End(V )

)H
is an algebra. For X ∈

Lie(G) let r(X) be the left invariant vector field on G given by right differentiation

r(X)f(g) =

[
d

dt
f (g exp(tX))

]
t=0

.

Let us extend r to g by linearity and to the enveloping algebra U(g) by

r(X1X2 · · ·Xk) = r(X1) ◦ r(X2) ◦ · · · r(Xk), ∀Xi ∈ g.

One can also attach to X a right invariant vector field on G defined as

l(X)f(g) =

[
d

dt
f (exp(−tX)g)

]
t=0

.

and left and right invariant derivatives are related by

(l(u)f)(g) = (r(Ad(g)u])f)(g) for all u ∈ U(g).
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In particular when Z ∈ Z(g) lies in the center of the enveloping algebra :

l(Z) = r(Z]) .

Proposition 1.2. (see e.g. [KR00]) The algebra DG(V) of G-invariant differential operators

on V is isomorphic to the algebra
(
U(g)⊗U(h) End(V )

)H
. This isomorphism is induced by the

following representation of U(g)⊗ End(V ) on C∞(G, V ) :

(X ∈ g, T ∈ End(V ), f ∈ C∞(G, V )) (X ⊗ T )f(g) = T (r(X)f(g)) .

In the sequel the representation (V, τ) will be (∧•u,∧Ad |H) in the simplest case but in order

to introduce twisted versions of the differential operators we will need an extra representation

of H. Let (E, σ) be any smooth representation of H and let ϕE be the algebra homomorphism

defined by

ϕE : (U(g)⊗ End(V ))H
q◦(r⊗c⊗IE)−−−−−−−−→

(
U(g)⊗U(h) End(V ⊗ E)

)H
.

Here c stands for the canonical action of End(V ) on V . An element in (U(g) ⊗ End(V ))H

is named here an abstract differential operator. If D ∈ (U(g) ⊗ End(V ))H we then have

an invariant differential operator on the vector bundle V ⊗ E , where (E, σ) is a smooth

representation of H.

D(E) = ϕE(D) .

Note that when E = E1 ⊕ E2 is a decomposable smooth representation of H then

(2) D(E) = D(E1)⊕D(E2) .

Another by-product of this construction is to provide algebraic operators when a smooth

representation (X,π) of G is given. Actually we define DX by

π ⊗ 1: U(g)⊗ End(V ) −→ End(X ⊗ V )
D 7−→ DX .

If X and E are given it is also useful to consider the operator

(3) DX ⊗ IE = π ⊗ c⊗ IE(D) ∈ End(X ⊗ V ⊗ E) .

In the context of Dolbeault operators where V = ∧•u, we obtain an algebra homomorphism

ϕE : (U(g)⊗ End(∧u))H
q◦(r⊗c⊗IE)−−−−−−−−→

(
U(g)⊗U(h) End(∧u⊗ E)

)H
.
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The abstract operators we shall consider are

∂̂ =
∑
i

Xi ⊗ e(ξi) ,(4a)

v = −
∑
i<j

1⊗ e(ξi)e(ξj)ι([Xi, Xj ]) ,(4b)

and the Dolbeault operator ∂ = ∂̂ + v .(4c)

2. The infinitesimal character

First we note some basic facts of linear algebra. If x is a linear operator on a vector space

such that x2 = 0, we denote its cohomology by Hx = kerx
imx . Let A be a Z2-graded algebra

with grading operator γ. By definition this means that γ2 = 1, and we say that γ is 1 on

even elements and −1 on odd elements. The graded commutator [ , ] turns A into a Lie

superalgebra. We define da as the graded commutator with a, that is

da(b) = [a, b] .

This means that if a ∈ A is an odd element then

da(b) = [a, b] = ab− γ(b)a (b ∈ A) .

If a is even then

da(b) = [a, b] = ab− ba (b ∈ A) .

In any case da is a graded endomorphism of the Z2-graded vector space A, and has the

same degree as a (the space of endomorphisms is also graded). So a 7→ da is an (even)

homomorphism of the underlying super Lie algebras. This means for example that if a and b

are odd elements of A, then

(5) dadb + dbda = d[a,b] so in particular d2
a = da2 = 0 if a2 = 0 .

Proposition 2.1. The endomorphism da is a graded derivation. In particular ker da is a

subalgebra of End(A). Moreover im da ∩ ker da is a two sided ideal of ker da. In particular,

when a2 = 0, then Hda is an algebra.

Proof. For b, c ∈ A one has for a given odd a

da(bc) = abc− γ(bc)a = da(b)c+ γ(b)ac− γ(b)γ(c)a = da(b)c+ γ(b)da(c) .

Assume b, c ∈ ker da. Then it immediately follows that bc ∈ ker da. Now if moreover b = da(b
′)

for some b′ ∈ ker d2
a, then, bc = da(b

′)c+γ(b′)da(c) = da(b
′c) and, using γ(c) ∈ ker da (because
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γ anticommutes with da),

cb = cda(b
′) = da(γ(c)b′)− da(γ(c))b′ = da(γ(c)b′) .

An analogous computation holds when a is even. �

Now assume we have a graded representation of A,

π : A → End(V ) ,

on a Z2-graded vector space V . Then the representation π induces by restriction a represen-

tation of the algebra ker da

π : ker da → ker dπ(a) ⊂ End(kerπ(a)) .

Moreover π(im da) ⊂ im dπ(a), and

(1) The ideal im dπ(a) sends kerπ(a) onto imπ(a).

(2) The algebra ker dπ(a) leaves imπ(a) stable.

This implies that π induces a representation

Hda → Hdπ(a) ⊂ End
(
Hπ(a)

)
.

The main example we will consider here is as follows. The space V is the space of smooth

sections of the vector bundle ∧U ⊗E where (E, σ) is a smooth representation of H. Moreover

A is the algebra of abstract differential operators, and the representation of A will be ϕE .

Note that the Z-graduation of the tensor algebra induces a Z2-graduation of the exterior

algebra.

Summarizing this discussion, we have obtained that ϕE induces a well defined map in

cohomology

ϕE : Hd∂
→ Hd∂(E)

⊂ End
(
H∂(E)

)
.

The algebra Hd∂
then acts on H∂(E). The left representation of U(g) on H∂(E) restricts to

Z(g). If some Z ∈ Z(g) is seen as an invariant differential operator acting by r(Z)⊗ I∧•u⊗E ,

remember that

l(Z) = r(Z])⊗ I∧•u⊗E .

As any element in Z(g)⊗I commutes with abstract odd differential operators and has even

degree, it lies in the kernel of d∂ . We have proved the following

Proposition 2.2. The restriction to Z(g) of the (left) action of U(g) on ker ∂(E) goes do

to a well defined action l on H∂(E). Moreover if Z ∈ Z(g), then the action of l(Z) on H∂(E)
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only depends on the class of Z] in the cohomology space Hd∂
. More precisely, this action is

given by

l(Z) = r(Z])⊗ I∧u⊗E .

We now need to compute this representation of Z(g) in terms of the Harish-Chandra

isomorphism. If the operator ∂ is replaced by the cubic Dirac operator D, the representation

Z(g)→ HdD has been computed in the proof of the Vogan conjecture as given by Huang and

Pandžić [HP06] [HP02]. In their proof they determine a homomorphism

ζD : Z(g)→ Z(h)

in the case H = K and Kostant [Kos03] extends it to the general case. Let

δh : U(h)→ U(g)⊗ End(∧•u)

be the derivative of the (restriction of the) representation Ad⊗∧Ad of H on U(g)⊗End(∧•u).

(In the case of the Dirac operator this representation becomes Ad⊗cliff where cliff is the

Clifford multiplication). The key point in the proof of Huang and Pandžić is to get a Hodge

decomposition

(6) ker dD ' δh(Z(h))⊕ im dD .

So HdD ' δh(Z(h)) ' Z(h), and the map ζD is defined as the composition Z(g) → HdD '
Z(h). In the Subsection 2.1 we will prove the following theorem which states the analogous

result for the Dolbeault operator.

Theorem 2.3. Let D = ∂ be the abstract Dolbeault operator defined in (4). Then the decom-

position in equation (6) is still true.

In particular we again have Hd∂
' δh(Z(h)) ' Z(h) and we can still define a map

ζ∂ : Z(g)→ Z(h) .

Lemma 2.4. The map ζ∂ satisfies

ζ∂(Z)] = ζ∂(Z]) , (Z ∈ Z(g)) .

This lemma will be clear from the identification of the map ζ∂ given in the proof of theorem

2.3 below. Let (E, σ) be any smooth representation of H as before. The action of l(Z) of

Z ∈ Z(g) on H∂(E) is then given by

l(Z) = r(Z])⊗ I∧u⊗E = (r ⊗ c)(ζ∂(Z]))⊗ IE = 1⊗ I∧u ⊗ σ(ζ∂(Z)) .
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Theorem 2.5 (theorem 0.1). Let E be a smooth representation of H which is Z(h)-finite. If

E = ⊕µE(µ) is a decomposition of E into primary Z(h)-modules with respective generalized

infinitesimal characters χµ, then as a (Z(g), G)-module

H∂(E) = ⊕µH∂(E(µ)) .

and the representation of Z(g) on H∂(E(µ)) is given by the generalized infinitesimal character

χµ+ρ(u).

Proof. In the case of the Dirac operator, the morphism ζD fits into the following commutative

diagram

(7)

Z(g)
ζD→ Z(h)

S(tg)
WG

↓
→ S(th)

WH

↓

Here the algebra tg (resp. th) a is Cartan subalgebra of g (resp. h contained in tg), the

vertical arrows are the Harish-Chandra isomorphisms and the bottom map is restriction.

For the Dolbeault operator one needs to know what happens to this diagram. This is exactly

where the ρ(u)-shift appears. The argument is given in the proof of Theorem 2.3 in Subsection

2.1. �

2.1. Proof of theorem 2.3. The strategy of the proof follows closely that of Huang and

Pandžić for the Dirac operator [HP02, HP06]. However in the situation we consider here the

operator d∂ defines a differential complex on the whole space U(g) ⊗ End(∧•u), not only on

its H-invariant part. We will write d∂full for this extended complex. So d∂full is seen as an

endomorphism of the algebra U(g) ⊗ End(∧•u). Note that the inclusion of the H-invariants

in the whole complex induces a map Hd∂
→ Hd∂full

.

The algebra U(g)⊗End(∧•u) has a natural filtration induced by the filtration of U(g) and

the trivial filtration of End(∧•u). As we shall recall in the proof of lemma 2.6 below, we

have an algebra isomorphism End(∧•u) ' ∧•h⊥. So the graded algebra associated to this

filtration is isomorphic to S(h)⊗S(h⊥)⊗∧•h⊥. The differential d∂full preserves this filtration

(shifting the degree by 1) so it induces a differential Gr(d∂full) on the associated graded space

by setting Gr(d∂full)(Gr a) = Gr(d∂full(a)) . The next lemma identifies this differential. This

computation has been carried out by Huang, Pandžić and Renard in [HPR06], Remark 2.3.

Full details can be found in [HPR05, section 3]. For the convenience of the reader, we recall

here the steps we need from this computation.
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Let ∂u ∈ End(S(h⊥)⊗ ∧•h⊥) be the Koszul differential along u :

∂u(u⊗ ω) =
∑
i

Xiu⊗ ι(Xi)ω .

Lemma 2.6. We have the following commutative diagram

U(g)⊗ End(∧•u)
Gr
→ S(h)⊗ S(h⊥)⊗ ∧•h⊥

U(g)⊗ End(∧•u)

d∂full

↓
Gr
→ S(h)⊗ S(h⊥)⊗ ∧•h⊥

1⊗ ∂u
↓

Proof. The algebra End(∧•u) is the algebra generated by the creation operators e(ξi) and

annihilation operators ι(Xi). These operators satisfy the relations :

(8)
e(ξi)e(ξj) + e(ξj)e(ξi) = 0 , ι(Xi)ι(Xj) + ι(Xj)ι(Xi) = 0

e(ξi)ι(Xj) + ι(Xj)e(ξi) = δij .

So any element of End(∧u) is in a unique way a sum of elements of the form

wIJ = e(ξi1) ◦ · · · e(ξik) ◦ ι(Xj1) ◦ · · · ι(Xjl) (i1 < · · · < ik , j1 < · · · < jl) .

The identification of End(∧u) with ∧h⊥ sends an element of this form to

s(wIJ) = ξi1 ∧ · · · ∧ ξik ∧Xj1 ∧ · · · ∧Xjl ∈ ∧u⊗ ∧u ' ∧h
⊥ .

So for u ∈ U(g), one gets

Gr(d∂)(Gr(u⊗ wIJ)) = Gr(d
∂̂
)(Gr(u⊗ wIJ)) =

∑
i

XiGr(u)⊗ s([e(ξi), wIJ ])

where [e(ξi), wIJ ] is the graded commutator, and thanks to relation (8)

s([e(ξi), wIJ ]) = ι(Xi)s(wIJ)

�

Lemma 2.7. The inclusion of S(h)⊗S(u)⊗∧•u in S(h)⊗S(h⊥)⊗∧•h⊥ induces an isomor-

phism S(h)⊗S(u)⊗∧•u ' H1⊗∂u. The inclusion of S(h)H⊗1⊗1 in
(
S(h)⊗ S(h⊥)⊗ ∧•h⊥

)H
induces an isomorphism in cohomology.

This lemma is proved as Lemma 3.5 in [HPR05]. The first part of this lemma is a well

known fact on Koszul cohomology. The second part actually follows from the fact that h

is the centralizer of an element ξ0 (defined in the introduction) such that ad ξ0 has positive

eigenvalues on u and negative eigenvalues on u.

Now any element of S(h)H ⊗ 1 ⊗ 1 is the image of an element in δh(Z(h)). This is true

because for u ∈ U(h) one has Gr(δh(u)) = Gr(u⊗ 1⊗ 1). Note that δh(Z(h)) is contained in
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ker d∂ . Moreover δh(Z(h)) ∩ imd∂ = 0 because it is true on the right side of the diagram by

Lemma 2.7.

Let a ∈ ker d∂ . We want to show that there exists u ∈ Z(h) and b ∈ imd∂ such that

a = δh(u) + b. We proceed by induction. This is obvious if a has order 0. Assume this is true

for any operator of order less than p− 1, and let a ∈ Up ⊗End(∧•u) such that Gr(a) has non

vanishing cohomology class. Then Gr(a) = s+ 1⊗ ∂u(Gr(b)) for some s ∈ S(h)H ⊗ 1⊗ 1 and

b ∈ Up−1(g)⊗ End(∧•u). Let u ∈ Z(h) such that Gr(δh(u)) = s. Then

d∂
(
a− δh(u)− d∂(b)

)
= 0 .

Moreover a − δh(u) − d∂(b) has degree p − 1. By assumption, there exist u′ ∈ Z(h) and b′

such that

a− δh(u)− d∂(b) = δh(u
′) + d∂(b′)

Hence

a− δh(u+ u′) = d∂(b+ b′)

So we have proved Theorem 2.3.

Now we identify the map ζ∂ . Recall that U(g) has the following decomposition [KV95,

Lemma 4.123] :

(9) U(g) = U(h)⊕
(
uU(g) + U(g)u

)
.

Moreover if p is the projection onto the first component then for z ∈ Z(g) we have p(z) ∈ Z(h)

and z − p(z) ∈ U(g)u. It follows from the first part of lemma 2.7 that

Gr(z ⊗ 1⊗ 1− δh(p(z)) = Gr((z − p(z))⊗ 1⊗ 1) = 0 ∈ H1⊗∂u .

It follows that if z ∈ Z(g) then z = δh(p(z))) in Hd∂
. We have proved

Lemma 2.8. The map ζ∂ is determined as follows.

(10) (∀z ∈ Z(h)) ζ∂(z) = p(z) .

Remark 2.9 (Casselman-Osborne Theorem). If X is a U(g)-module then the algebra Hd∂

acts on H∂X,full
= H(u, X) and for z ∈ Z(g) the elements z and δh(p(z)) act by the same

scalar.

Let us consider the degree 0 of H(u, X) when X = F λ is an irreducible finite-dimensional

G-module with highest weight λ = µ − ρ(g). We have H0(u, X) = Eλ and this implies that

for z ∈ Z(h), δh(z) acts by the scalar χλ+ρ(h) = χµ−ρ(u). By a standard density argument

it follows that the map S(t)WG → S(t)WH defined by prescribing the diagram (7) to be
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commutative is given by µ 7→ µ̃ = µ+ ρ(u). So we have identified the map ζ∂ in terms of the

Harish-Chandra isomorphism. We have proved Theorem 2.5.

Remark 2.10. This also gives a proof of the following weak version of a theorem of Kostant

which computes H∂
Fλ,full

. Let W1 = {w ∈ WG , (∀α ∈ ∆+(g, t)) w−1α ∈ ∆+(h, t)}. If Eν is

an irreducible H-module with highest weight ν such that HomH

(
Eν , H∂

Fλ,full

)
6= 0 then there

exists w ∈W1 such that

ν = w(λ+ ρ(g))− ρ(g) .

3. The Zuckerman translation functor

3.1. Tensoring with finite-dimensional representations. Let (F, π) (resp. (V, τ)) be a

finite dimensional (resp. smooth) representation of G (resp. H).

Proposition 3.1. The map α : C∞(G, V )H ⊗ F → C∞(G, V ⊗ F )H given by

α(f ⊗ w)(g) = f(g)⊗ π(g)−1w ∈ V ⊗ F

is a smooth G-module isomorphism.

Proof. The map α is clearly equivariant and the inverse β is given as follows. Let (wi) be a

basis of F . For any g ∈ G, the family (π(g)wi) is still a basis of G. If f ∈ C∞(G, V ⊗ F )H ,

then there exist functions fi from G to V such that for all g ∈ G, f(g) =
∑

i π(g)−1wi⊗fi(g).

One checks easily that the functions fi are H-invariant. We then set β(f) =
∑
fi ⊗ wi. The

map β is well defined, equivariant and does not depend on the basis wi. �

We now relate the different differential operators on the bundles in consideration. Recall

that the algebraic operator DF ⊗ IE has been defined in equation (3).

Proposition 3.2. Let D ∈ (h⊥⊗End(V )H be an abstract operator of order 1 with vanishing

order 0 part. One has

α ◦ (D(E)⊗ IF ) =
(
D(E ⊗ F ) + 1⊗ (DF ⊗ IE)

)
◦ α .

Proof. Let X ∈ h⊥, f ∈ C∞(G, V ⊗ E) We have

(r(X)⊗ 1)α(f ⊗ w)(g) =

[
d

dt
f(g exp(tX))⊗ π(exp(−tX)g−1)w

]
t=0

= r(X)f(g)⊗ g−1w − f(g)⊗ π(X)π(g)−1w

= α(r(X)f ⊗ w)(g)− (1⊗ (IV ⊗ IE ⊗ π(X)))α(f ⊗ w)(g)(11)

The proposition follows. �
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In our case, this formula reads

α ◦ (∂(E)⊗ IF ) ◦ β = ∂(E ⊗ F ) + 1⊗ (∂̂F ⊗ IE) = ∂̂(E ⊗ F ) + 1⊗ (∂F ⊗ IE) .

We will need later an algebraic version of Proposition 3.2 that does not make use of the

maps α and β in the definition of the operator α(D(E)⊗ I)β. Actually, using the embedding

F ↪→ C∞(G, F|H)H (given by w 7→ (g 7→ ρw(g) = g−1w)) one sees that C∞(G, V ⊗E)H ⊗ F
is a subspace of the space of sections of the fibre bundle on G/H obtained by restriction to

the diagonal of G/H ×G/H of the bundle (V ⊗ E)�F . So one expects that the Leibniz rule

used in the preceding proposition has a formulation in terms of the coproduct of U(g).

Let ∆ be the coproduct of U(g) and (F, π) a finite-dimensional representation of G as

before. We define ∆F = (I ⊗ π) ◦∆. Hence

(12) ∆F : U(g)→ U(g)⊗ End(F ) .

Proposition 3.3. The linear map

∆F ⊗ I : U(g)⊗ End(V ⊗ E)→ U(g)⊗ End(V ⊗ E ⊗ F )

induces an algebra homomorphism

∆F : DG(V ⊗ E)−→DG(V ⊗ E ⊗ F)

Proof. We have to prove that the map ∆F ⊗ 1 sends the ideal JV⊗E in the definition of

U(g)⊗U(h) End(V ⊗ E) to the ideal JV⊗E⊗F in the definition of the corresponding quotient.

By lemma 1.1 it is enough to consider the elements Y ⊗ IV⊗E + 1⊗ Y for Y ∈ h. But

∆F ⊗ I(Y ⊗ IV⊗E + 1⊗ (c⊗ σ(Y )))

= Y ⊗ IV⊗E⊗F + 1⊗ π(Y )⊗ IV⊗E + 1⊗ (c⊗ σ(Y ))

= Y ⊗ IV⊗E⊗F + 1⊗ (π ⊗ c⊗ σ(Y ))

It follows that ∆F (Y ⊗ IV⊗E + 1⊗ Y ) ∈ JV⊗E⊗F . �

Proposition 3.4. One has ∆F (D(E)) = α(D(E)⊗ I)β
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Proof. Let us compute ∆F ⊗ I(X ⊗ IV⊗E⊗F ) on α(f ⊗ w) for X ∈ h⊥. We have

∆F ⊗ I(X⊗IV⊗E⊗F )α(f ⊗ w)

= (∆F (X)⊗ I)α(f ⊗ w)

= (r(X)⊗ IV⊗E⊗F + 1⊗ IV⊗E ⊗ π(X))α(f ⊗ w)

= −(1⊗ IV⊗E ⊗ π(X))α(f ⊗ w) + α((r(X)f ⊗ w)

+ (1⊗ IV⊗E ⊗ π(X))α(f ⊗ w)

= α(r(X)f ⊗ w)

by the computation (11). The proposition follows. �

Summarising this discussion we have obtained the following result.

Lemma 3.5. Let D be an abstract differential operator of order 1 with vanishing order 0

part. Then for any finite-dimensional representation (F, π) of G and smooth representation

E of H the operators ∆F (D(E)), D(E⊗F ) and DF ⊗ IE are related by the following formula

:

∆F (D(E)) = D(E ⊗ F ) + 1⊗ (DF ⊗ IE) .

3.2. Proof of Theorems 0.2 and 0.3. We first prove Theorem 0.2. Barchini proposed it

as exercise (b) of lecture 2 in [Bar00]. The isomorphism α satisfies

∆F (∂(E)) ◦ α = α ◦ (∂(E)⊗ IF ) .

In particular, it induces an isomorphism at the level of cohomology.

Proposition 3.6. The linear map α induces a G-module isomorphism

α : H∂(E) ⊗ F
∼−→H∆F (∂(E)) ,

whose inverse is induced by β = α−1.

Moreover, thanks to Lemma 3.5 we have a decomposition

(13) ∆F (∂(E)) = ∂(E ⊗ F ) + 1⊗ (∂̂F ⊗ IE)

As in the introduction we let F ν be a finite-dimensional irreducible representation of G

with highest weight ν and consider its restriction to H. This restriction contains a finite-

dimensional irreducible representation Eν with highest weight ν. So as an H-module, one

has F ν = Eν ⊕ E′ where ν is not a weight of E′. We have an H-map

iHµ,ν : E(µ)⊗ Eν → E(µ)⊗ F ν ,
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inducing a map

iGµ,ν : C∞
(
G ,∧•u⊗ E(µ)⊗ Eν

)
→ C∞

(
G ,∧•u⊗ E(µ)⊗ F ν

)
.

Thanks to equation (2), this map induces a G-map H∂(E(µ)⊗Eν) −→ H∂(E((µ)⊗F ν)) , but

a priori H∆Fν (∂(E(µ))) and H∂(E(µ)⊗F ν) may be different because of the presence of ∂̂F in

equation (13). What we need is a map

H∂(E(µ)⊗Eν) −→ H∆Fν (∂(E(µ))) .

Proposition 3.7. The range of iGµ,ν is contained in the kernel of the operator 1⊗ ∂̂F ν ⊗ IEν .

Proof. The range of iGµ,ν is the space of sections of the bundle associated to ∧u⊗(F ν)u. In fact

(F ν)u = F ν/uF ν is a highest weight module of H with highest weight ν. But the operator

∂̂F ν vanishes on ∧u⊗ (F ν)u. �

Thanks to this proposition, we see that

∆F ν (∂(E(µ))) ◦ iGµ,ν = iGµ,ν ◦ ∂(E(µ)⊗ Eν)) .

so that iGµ,ν goes down to a G-map on cohomology. Together with Proposition 3.6, this implies

Theorem 0.2.

Let us remind the condition (C) relative to Theorem 0.3 :

(C) µ+ ρ(u) + ν is as singular as µ+ ρ(u) .

Assume from now on that condition (C) is fulfilled. In order to prove theorem 0.3 we introduce

a filtration of F ν by (q, H)-modules

Eν = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F ν ,

such that Fk/Fk−1 is an irreducible H-module with trivial u-action. Theorem 0.3 will result

from the following two lemmas.

Lemma 3.8. Let E(µ+ ν) be the component of E(µ)⊗Eν with infinitesimal character χµ+ν .

Then the inclusion E(µ+ ν) ⊂ E(µ) ⊗ Eν induces an isomorphism of H∂(E(µ+ν)) onto the

component of H∂(E(µ)⊗Eν) with generalized infinitesimal character χµ+ν+ρ(u).

Note that the operator ∆F ν (∂(E(µ)) restricts to the bundles associated to the spaces

∧u⊗E(µ)⊗Fk, for k = 0, . . . , n. Let us denote ∆F ν (∂(E(µ))|Fk this restriction. Moreover a

differential operator is induced on the bundle associated to ∧u⊗E(µ)⊗Fk/Fk−1 for k > 0. As
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Fk/Fk−1 is trivial as a u-module, one sees that this induced operator is ∂(E(µ)⊗ Fk/Fk−1).

The long exact sequence in cohomology reads

(14) H∆Fν (∂(E(µ))|Fk−1

ik−→H∆Fν (∂(E(µ))|Fk
→ H∂(E(µ)⊗Fk/Fk−1) → H∆Fν (∂(E(µ))|Fk−1

Lemma 3.9. For k > 0, the component of H∂(E(µ)⊗Fk/Fk−1) with generalized infinitesimal

character χµ+ν+ρ(u) vanishes.

From Lemma 3.9 we deduce that the restriction of ik to the component of H∆Fν (∂(E(µ))|Fk−1

with generalized infinitesimal character χµ+ν+ρ(u) is an isomorphism onto the corresponding

component of H∆Fν (∂(E(µ))|Fk
. Hence the component of H∆Fν (∂(E(µ)) with generalized infini-

tesimal character χµ+ν+ρ(u) is the component of H∆Fν (∂(E(µ))|F0
with generalized infinitesimal

character χµ+ν+ρ(u). This last one is given in Lemma 3.8. Theorem 0.3 follows.

It remains to prove the two lemmas. According to Theorem 0.1, we know that if the

component of H∂(E(µ)⊗Fk/Fk−1) (resp. H∆Fν (∂(E(µ))|F0
) with infinitesimal character χµ+ν+ρ(u)

does not vanish then there exists some weight ν ′ of F ν and an element w in the Weyl group

such that

µ+ ν ′ + ρ(u) = w(µ+ ν + ρ(u)) .

By condition (C) and a well known technical result [KV95, Proposition 7.166] this implies

that ν ′ = ν and w = 1. The two lemmas immediately follow.
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